Skip to main content
Log in

Parallel synthesis of a series of non-functional ATP/NAD analogs with activity against trypanosomatid parasites

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Non-functional analogs of the cofactors ATP and NAD are putative inhibitors of ATP- or NAD-dependant enzymes. Since pathogenic protozoa rely heavily on the salvage of purine nucleosides from the bloodstream of their host, such compounds are of interest as antiplasmodial and antitrypanosomal agents with a multitude of molecular targets. By replacing the negatively charged phosphate residues with a constrained unsaturated amide spacer and the nicotinamide moiety of NAD with various lipophilic substituents, 15 new ATP/NAD analogs were obtained in screening quantities. In these compounds, a 5′-desoxyadenosine moiety was conserved as key molecular recognition motif. The inhibition of P. falciparum and T. brucei ssp. in a whole parasite in vitro assay is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAD:

Benzamide adenine dinucleotide

CDK:

Cyclin-dependent kinase

COMT:

Catechol O-methyltransferase

DIC:

N,N′-Diisopropyl-carbodiimide

DMAP:

4-Dimethylamino-pyridine

DMF:

N,N-Dimethyl formamide

GAPDH:

Glyceraldehyde phosphate dehydrogenase

HOBt:

N-Hydroxy benzotriazole

MPLC:

Medium pressure liquid chromatography

NEK:

(Never-in-mitosis-A)-related protein kinase

References

  1. Al-Salabi MI, Wallace LJM, Luscher A, Maser P, Candlish D, Rodenko B, Gould MK, Jabeen I, Ajith SN, de Koning HP (2007) Molecular interactions underlying the unusually high adenosine affinity of a novel Trypanosoma brucei nucleoside transporter. Mol Pharmacol 71: 921–929. doi:10.1124/mol.106.031559

    Article  CAS  PubMed  Google Scholar 

  2. Aronov AM, Gelb MH (1998) Synthesis and structure-activity relationships of adenosine analogs as inhibitors of trypanosomal glyceraldehyde-3-phosphate dehydrogenase. Modifications at positions 5′ and 8. Bioorg Med Chem Lett 8: 3505–3510. doi:S0960894X98006350

    Article  CAS  PubMed  Google Scholar 

  3. Bell CE, Yeates TO, Eisenberg D (1997) Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes. Protein Sci 6: 2084–2096. doi:10.1002/pro.5560061004

    Article  CAS  PubMed  Google Scholar 

  4. Bonnac L, Chen L, Pathak R, Gao G, Ming Q, Bennett E, Felczak K, Kullberg M, Patterson SE, Mazzola F et al (2007) Probing binding requirements of NAD kinase with modified substrate (NAD) analogues. Bioorg Med Chem Lett 17: 1512–1515. doi:S0960-894X(07)00049-2, 10.1016/j.bmcl.2007.01.012

    Google Scholar 

  5. Bressi JC, Choe J, Hough MT, Buckner FS, Van Voorhis WC, Verlinde CL, Hol WG, Gelb MH (2000) Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N 6-substituted adenosine. J Med Chem 43: 4135–4150. doi:jm000287a

    Article  CAS  PubMed  Google Scholar 

  6. Bressi JC, Verlinde C, Aronov AM, Le Shaw M, Shin SS, Nguyen LN, Suresh S, Buckner FS, Van Voorhis WC, Kuntz ID et al (2001) Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design. J Med Chem 44: 2080–2093. doi:10.1021/jm000472o

    Article  CAS  PubMed  Google Scholar 

  7. Caprellacci L, Franchetti P, Vita P, Petrelli R, Lavecchia A, Jayaram HN, Saiko P, Graser G, Szekeres T, Grifantini M (2008) Ribose-modified purine nucleosides as ribonucleotide reductase inhibitors. Synthesis, antitumor activity, and molecular modeling of N 6-substituted 3′-C-methyladenosine derivatives. J Med Chem 51:4260–4269. doi:10.1021/jm800205c

    Article  Google Scholar 

  8. de Koning HP (2001) Transporters in African trypanosomes: role in drug action and resistance. Int J Parasitol 31: 512–522. doi:S0020-7519(01)00167-9

    PubMed  Google Scholar 

  9. de Koning HP, Jarvis SM (1999) Adenosine transporters in bloodstream forms of Trypanosoma brucei  brucei: substrate recognition motifs and affinity for trypanocidal drugs. Mol Pharmacol 56: 1162–1170

    PubMed  Google Scholar 

  10. de Koning HP, Bridges DJ, Burchmore RJ (2005) Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev 29: 987–1020. doi:S0168-6445(05)00038-0, 10.1016/j.femsre.2005.03.004

  11. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16: 710–718

    CAS  PubMed  Google Scholar 

  12. Dolezal K, Popa I, Hauserova E, Spichal L, Chakrabarty K, Novak O, Krystof V, Voller J, Holub J, Strnad M (2007) Preparation, biological activity and endogenous occurrence of N 6-benzyladenosines. Bioorg Med Chem 15: 3737–3747. doi:10.1016/j.bmc.2007.03.038

    Article  CAS  PubMed  Google Scholar 

  13. Flynn DL, Devraj R, Naing W, Parlow J, Weidner J, Yang S (1998) Polymer-assisted solution phase (PASP) chemical library synthesis. Med Chem Res 8: 219–243

    CAS  Google Scholar 

  14. Gale M   Jr, Carter V, Parsons M (1994) Translational control mediates the developmental regulation of the Trypanosoma brucei Nrk protein kinase. J Biol Chem 269: 31659–31665

    CAS  PubMed  Google Scholar 

  15. Gebicki J, Marcinek A, Zielonka J (2004) Transient species in the stepwise interconversion of NADH and NAD+. Acc Chem Res 37: 379–386. doi:10.1021/ar030171j

    Article  CAS  PubMed  Google Scholar 

  16. Golisade A, Herforth C, Quirijnen L, Maes L, Link A (2002) Improving an antitrypanosomal lead applying nucleophilic substitution on a safety catch linker. Bioorg Med Chem 9: 159–165. doi:S096808960100253X

    Article  Google Scholar 

  17. Golisade A, Wiesner J, Herforth C, Jomaa H, Link A (2002) Anti-malarial activity of N 6-substituted adenosine derivatives. Part I. Bioorg Med Chem 10: 769–777. doi:S0968089601003315

    Article  CAS  Google Scholar 

  18. Goulioukina N, Wehbe J, Marchand D, Busson R, Lescrinier E, Heindl D, Herdewijn P (2007) Synthesis of nicotinamide adenine dinucleotide (NAD) analogues with a sugar modified nicotinamide moiety. Helv Chim Acta 90: 1266–1278. doi:10.1002/hlca.200790127

    Article  CAS  Google Scholar 

  19. Grant KM, Hassan P, Anderson JS, Mottram JC (1998) The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with p12. J Biol Chem 273: 10153–10159. doi:10.1074/jbc.273.17.10153

    Article  CAS  PubMed  Google Scholar 

  20. Grant KM, Dunion MH, Yardley V, Skaltsounis AL, Marko D, Eisenbrand G, Croft SL, Meijer L, Mottram JC (2004) Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity. Antimicrob Agents Chemother 48: 3033–3042. doi:10.1128/AAC.48.8.3033-3042.2004, 48/8/3033

  21. Greig N, Wyllie S, Patterson S, Fairlamb AH (2009) A comparative study of methylglyoxal metabolism in trypanosomatids. FEBS J 276: 376–386. doi:10.1111/j.1742-4658.2008.06788.x

    Article  CAS  PubMed  Google Scholar 

  22. Herforth C, Wiesner J, Franke S, Golisade A, Jomaa H, Link A (2002) Antimalarial activity of N 6-substituted adenosine derivatives (Part 2). J Comb Chem 4: 302–314. doi:cc0100823

    Article  CAS  PubMed  Google Scholar 

  23. Herforth C, Wiesner J, Heidler P, Sanderbrand S, Van Calenbergh S, Jomaa H, Link A (2004) Antimalarial activity of N 6-substituted adenosine derivatives. Part 3. Bioorg Med Chem 12: 755–762. doi:10.1016/j.bmc.2003.11.008, S0968089603007752

    Google Scholar 

  24. Hirsch AK, Fischer FR, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem Int Ed 46: 338–352. doi:10.1002/anie.200603420

    Article  CAS  Google Scholar 

  25. Jagtap PG, Southan GJ, Baloglu E, Ram S, Mabley JG, Marton A, Salzman A, Szabo C (2004) The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg Med Chem Lett 14: 81–85. doi:S0960894X0301062X

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy KJ, Bressi JC, Gelb MH (2001) A disubstituted NAD+ analogue is a nanomolar inhibitor of trypanosomal glyceraldehyde-3-phosphate dehydrogenase. Bioorg Med Chem Lett 11: 95–98. doi:S0960894X00006089

    Article  CAS  PubMed  Google Scholar 

  27. Kim YA, Sharon A, Chu CK, Rais RH, Al Safarjalani ON, Naguib FN, el Kouni MH (2007) Synthesis, biological evaluation and molecular modeling studies of N 6-benzyladenosine analogues as potential anti-toxoplasma agents. Biochem Pharmacol 73: 1558–1572. doi:S0006-2952(07)00033-0, 10.1016/j.bcp.2007.01.026

    Google Scholar 

  28. Kunick C, Egert-Schmidt AM (2008) The short history of protein kinase inhibitors. New, competitive, successful. Pharm Unserer Zeit 37: 360–368. doi:10.1002/pauz.200800277

    CAS  Google Scholar 

  29. Kunick C, Lauenroth K, Leost M, Meijer L, Lemcke T (2004) 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 beta. Bioorg Med Chem Lett 14: 413–416

    Article  CAS  PubMed  Google Scholar 

  30. Lerner C, Ruf A, Gramlich V, Masjost B, Zurcher G, Jakob-Roetne R, Borroni E, Diederich F (2001) X-ray crystal structure of a bisubstrate inhibitor bound to the enzyme catechol-O-methyltransferase: a dramatic effect of inhibitor preorganization on binding affinity. Angew Chem Int Ed 40: 4040–4042. doi:10.1002/1521-3773(20011105)40:21<4040:AID-ANIE4040>3.0.CO;2-C

    Article  CAS  Google Scholar 

  31. Lerner C, Masjost B, Ruf A, Gramlich V, Jakob-Roetne R, Zurcher G, Borroni E, Diederich F (2003) Bisubstrate inhibitors for the enzyme catechol-O-methyltransferase (COMT): influence of inhibitor preorganisation and linker length between the two substrate moieties on binding affinity. Org Biomol Chem 1: 42–49. doi:10.1039/b208690p

    Article  CAS  PubMed  Google Scholar 

  32. Link A (2000) Comments on the terminology for applications of temporarily attached solubility-modifying moieties in combinatorial chemistry. Angew Chem Int Ed 39: 4039–4040. doi:10.1002/1521-3773(20001117)39:22<4039:AID-ANIE4039>3.0.CO;2-3

    Article  CAS  Google Scholar 

  33. Link A, Van Calenbergh S, Herdewijn P (1998) Practical method for the parallel synthesis of 2′-amido-2′-deoxyadenosines. Tetrahedron Lett 39: 5175–5176. doi:10.1016/S0040-4039(98)01057-0

    Article  CAS  Google Scholar 

  34. Matile H, Pink JRL (1990) Plasmodium falciparum malaria parasite cultures and their use in immunology. In: Lefkovits I, Pernis B (eds) Immunological methods. Academic Press, San Diego, pp 221–234

  35. Masjost B, Ballmer P, Borroni E, Zurcher G, Winkler FK, Jakob-Roetne R, Diederich F (2000) Structure-based design, synthesis, and in vitro evaluation of bisubstrate inhibitors for catechol O-methyltransferase (COMT). Chem Eur J 6: 971–982. doi:10.1002/(SICI)1521-3765(20000317)6:6<971:AID-CHEM971>3.0.CO;2-0

    Article  CAS  Google Scholar 

  36. Natto MJ, Wallace LJ, Candlish D, Al-Salabi MI, Coutts SE, de Koning HP (2005) Trypanosoma brucei: expression of multiple purine transporters prevents the development of allopurinol resistance. Exp Parasitol 109: 80–86. doi:S0014-4894(04)00188-2, 10.1016/j.exppara.2004.11.004

    Google Scholar 

  37. Naula C, Parsons M, Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta 1754: 151–159. doi:S1570-9639(05)00303-1, 10.1016/j.bbapap.2005.08.018

    Google Scholar 

  38. Neres J, Labello NP, Somu RV, Boshoff HI, Wilson DJ, Vannada J, Chen L, Barry CE III, Bennett EM, Aldrich CC (2008) Inhibition of siderophore biosynthesis in mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5′-O-[N-(Salicyl)sulfamoyl]adenosine. J Med Chem 51: 5349–5370. doi:10.1021/jm800567v

    Article  CAS  PubMed  Google Scholar 

  39. Paulini R, Lerner C, Jakob-Roetne R, Zurcher G, Borroni E, Diederich F (2004) Bisubstrate inhibitors of the enzyme catechol O-methyltransferase (COMT): efficient inhibition despite the lack of a nitro group. ChemBioChem 5: 1270–1274. doi:10.1002/cbic.200400084

    Article  CAS  PubMed  Google Scholar 

  40. Paulini R, Trindler C, Lerner C, Brandli L, Schweizer WB, Jakob-Roetne R, Zurcher G, Borroni E, Diederich F (2006) Bisubstrate inhibitors of catechol O-methyltransferase (COMT): the crucial role of the ribose structural unit for inhibitor binding affinity. ChemMedChem 1: 340–357. doi:10.1002/cmdc.200500065

    Article  CAS  PubMed  Google Scholar 

  41. Qiao C, Gupte A, Boshoff HI, Wilson DJ, Bennett EM, Somu RV, Barry CE III, Aldrich CC (2007) 5′-O-[(N-acyl)sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: an adenylation enzyme required for siderophore biosynthesis of the mycobactins. J Med Chem 50: 6080–6094. doi:10.1021/jm070905o

    Article  CAS  PubMed  Google Scholar 

  42. Räz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop 68: 139–147. doi:S0001706X9700079X

    Article  PubMed  Google Scholar 

  43. Reichwald C, Shimony O, Dunkel U, Sacerdoti-Sierra N, Jaffe CL, Kunick C (2008) 2-(3-Aryl-3-oxopropen-1-yl)-9-tert-butyl-paullones: a new antileishmanial chemotype. J Med Chem 51: 659–665. doi:10.1021/jm7012166

    Article  CAS  PubMed  Google Scholar 

  44. Renner S, Schwab CH, Gasteiger J, Schneider G (2006) Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. J Chem Inf Model 46: 2324–2332. doi:10.1021/ci050075s

    Article  CAS  PubMed  Google Scholar 

  45. Rottenberg ME, Masocha W, Ferella M, Petitto-Assis F, Goto H, Kristensson K, McCaffrey R, Wigzell H (2005) Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. J Infect Dis 192: 1658–1665. doi:10.1086/496896

    Article  CAS  PubMed  Google Scholar 

  46. Salvino JM, Kumar NV, Orton E, Airey J, Kiesow T, Crawford K, Mathew R, Krolikowski P, Drew M, Engers D et al (2000) Polymer-supported tetrafluorophenol: a new activated resin for chemical library synthesis. J Comb Chem 2: 691–697. doi:cc0000491

    Article  CAS  PubMed  Google Scholar 

  47. Schultz C, Link A, Leost M, Zaharevitz DW, Gussio R, Sausville EA, Meijer L, Kunick C (1999) Paullones, a series of cyclin-dependent kinase inhibitors: synthesis, evaluation of CDK1/cyclin B inhibition, and in vitro antitumor activity. J Med Chem 42: 2909–2919. doi:10.1021/jm9900570

    Article  CAS  PubMed  Google Scholar 

  48. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305: 399–401. doi:10.1126/science.1099480, 305/5682/399

    Google Scholar 

  49. Smith PE, Tanner JJ (1999) Molecular dynamics simulations of NAD+ in solution. J Am Chem Soc 121: 8637–8644. doi:10.1021/ja991624b

    Article  CAS  Google Scholar 

  50. Smith PE, Tanner JJ (2000) Conformations of nicotinamide adenine dinucleotide (NAD+) in various environments. J Mol Recognit 13: 27–34. doi:10.1002/(SICI)1099-1352(200001/02)13:1<27:AID-JMR483>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  51. Stukenbrock H, Mussmann R, Geese M, Ferandin Y, Lozach O, Lemcke T, Kegel S, Lomow A, Burk U, Dohrmann C et al (2008) 9-cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic beta cell protection and replication. J Med Chem 51: 2196–2207. doi:10.1021/jm701582f

    Article  CAS  PubMed  Google Scholar 

  52. Trapp J, Jochum A, Meier R, Saunders L, Marshall B, Kunick C, Verdin E, Goekjian P, Sippl W, Jung M (2006) Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition. J Med Chem 49: 7307–7316. doi:10.1021/jm060118b

    Article  CAS  PubMed  Google Scholar 

  53. Vande Vijver P, Vondenhoff GH, Denivelle S, Rozenski J, Verhaegen J, Van Aerschot A, Herdewijn P (2009) Antibacterial 5′-O- (N-dipeptidyl)-sulfamoyladenosines. Bioorg Med Chem 17: 260–269. doi:S0968-0896(08)01057-2, S0968-0896(08)01057-2

    Google Scholar 

  54. Wallace LJ, Candlish D, Hagos A, Seley KL, de Koning HP (2004) Selective transport of a new class of purine antimetabolites by the protozoan parasite Trypanosoma brucei. Nucleos Nucleot Nucl 23: 1441–1444. doi:10.1081/NCN-200027660

    Article  CAS  Google Scholar 

  55. Yoshikawa N, Yamada S, Takeuchi C, Kagota S, Shinozuka K, Kunitomo M, Nakamura K (2008) Cordycepin (3′-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A(3) receptor followed by glycogen synthase kinase-3beta activation and cyclin D (1) suppression. Naunyn Schmiedebergs Arch Pharmacol 377: 591–595. doi:10.1007/s00210-007-0218-y

    Article  CAS  PubMed  Google Scholar 

  56. Zohrabi-Kalantari V, Heidler P, Larsen T, Link A (2005) O,N, N′-trialkylisoureas as mild activating reagents for N-acylsulfonamide anchors. Org Lett 7: 5665–5667. doi:10.1021/ol052351u

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Link.

Additional information

Dedicated to Prof. Dr. Hans-Hartwig Otto on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, A., Heidler, P., Kaiser, M. et al. Parallel synthesis of a series of non-functional ATP/NAD analogs with activity against trypanosomatid parasites. Mol Divers 14, 215–224 (2010). https://doi.org/10.1007/s11030-009-9160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9160-x

Keywords

Navigation