Skip to main content

Advertisement

Log in

Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

This paper applies the DIVA model to assess the risk of and adaptation to sea-level rise for the European Union in the 21st century under the A2 and B1 scenarios of the Intergovernmental Panel on Climate Change. For each scenario, impacts are estimated without and with adaptation in the form of increasing dike heights and nourishing beaches. Before 2050, the level of impacts is primarily determined by socio-economic development. In 2100 and assuming no adaptation, 780 × 103 people/year are estimated to be affected by coastal flooding under A2 and 200 × 103 people/year under B1. The total monetary damage caused by flooding, salinity intrusion, land erosion and migration is projected to be about US$ 17 × 109 under both scenarios in 2100; damage costs relative to GDP are highest for the Netherlands (0.3% of GDP under A2). Adaptation reduces the number of people flooded by factors of 110 to 288 and total damage costs by factors of 7 to 9. In 2100 adaptation costs are projected to be US$ 3.5 × 109 under A2 and 2.6 × 109 under B1; adaptation costs relative to GDP are highest for Estonia (0.16% under A2) and Ireland (0.05% under A2). These results suggest that adaptation measures to sea-level rise are beneficial and affordable, and will be widely applied throughout the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcamo J, Moreno J, Nováky B, Bindi M, Corobov R, Devoy R, Giannakopoulos C, Martin E, Olesen J, Shvidenko A (2007) Europe. In: Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Climate change 2007: impacts, adaptation and vulnerability. contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 541–580

    Google Scholar 

  • CIESIN and CIAT (2004) Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network, Columbia University and Centro Internacional de Agricultura Tropical, Palisades. CIESIN, Columbia University, NY

  • de la Vega-Leinert A, Nicholls RJ, Tol RSJ (eds.) (2000) Proceedings of the SURVAS Expert Workshop on European Vulnerability and Adaptation to Accelerated Sea-Level Rise, Hamburg, Germany, 19–21 June, Flood Hazard Research Centre, Middlesex University, Enfield, UK

  • DINAS-COAST Consortium (2006) DIVA 1.5.5. Potsdam Institute for Climate Impact Research, Potsdam, Germany, CD-ROM

  • European Commission (2007) Green Paper from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Adapting to climate change in Europe options for EU action. Technical report, European Commission

  • European Commission (2009) White Paper from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Adapting to climate change: Towards a European framework for action. Technical report, European Commission

  • Grinsted A, Moore JC, Jevrejeva S (2009) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dyn. doi:10.1007/s00382-008-0507-2

    Google Scholar 

  • Haigh I, Nicholls R, Wells N (2010) Assessing changes in extreme sea levels: Application to the English Channel, 1900–2006. Continental Shelf Research, accepted

  • Hamilton JM, Maddison DJ, Tol RSJ (2005a) Climate change and international tourism: a simulation study. Glob Environ Change 15(3):253–266

    Article  Google Scholar 

  • Hamilton JM, Maddison DJ, Tol RSJ (2005b) The effects of climate change on international tourism. Clim Res 29:255–268

    Article  Google Scholar 

  • Hinkel J (2005) DIVA: an iterative method for building modular integrated models. Advances in Geosciences 4:45–50

    Article  Google Scholar 

  • Hinkel J, Klein RJT (2009) The DINAS-COAST project: developing a tool for the dynamic and interactive assessment of coastal vulnerability. Glob Environ Change 19(3):384–395

    Article  Google Scholar 

  • Hoozemans FJ, Marchand M, Pennekamp H (1993) Sea level rise: a global vulnerability assessment: Vulnerability assessments for population, coastal wetlands and rice production on a global scale. Delft Hydraulics and Rijkswaterstaat, Delft and The Hague, The Netherlands, revised edition

  • Hastings DA, Dunbar PK, Elphingstone GM, Bootz M, Murakami H, Maruyama H, Masaharu H, Holland P, Payne J, Bryant NA, Logan TL, Muller JP, Schreier G, MacDonald JS (eds) (1999) The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80305-3328, U.S.A. Digital data base on the World Wide Web (URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs

  • IMAGE Team (2002) The IMAGE 2.2 implementation of the SRES scenarios. RIVM Rapport 481508018, CD-ROM, RIVM, Bilthoven, the Netherlands

  • IPCC (2007a) Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Tignor KAM, Miller H (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • IPCC (2007b). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp

  • Klein RJT, Nicholls RJ, Mimura N (1999) Coastal adaptation to climate change: can the IPCC technical guidelines be applied? Mitig Adapt Strateg Glob Change 4:51–64

    Google Scholar 

  • Klein R, Nicholls R, Ragoonaden S, Capobianco M, Aston J, Buckley E (2001) Technological options for adaptation to climate change in coastal zones. J Coast Res 17(3):531–543

    Google Scholar 

  • Kont A, Jaagus J, Aunap R, Ratas U, Rivis R (2008) Implications of sea-level rise for Estonia. J Coast Res 24(2):423–431

    Article  Google Scholar 

  • Lichter M, Vafeidis AT, Nicholls RJ, Kaiser G (2010) Exploring data-related uncertainties in analyses of land area and population in the Low Elevation Coastal Zone (LECZ). Under review

  • Lowe JA, Howard TP, Pardaens A, Tinker J, Holt J, Wakelin S, Milne G, Leake J, Wolf J, Horsburgh K, Reeder T, Jenkins G, Ridley J, Dye S, Bradley S (2009) UK climate projections science report: marine and coastal projections. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Maaten R (2006) River Effect. DINAS-COAST Consortium, 2006. Diva 1.5.5. Potsdam Institute for Climate Impact Research, Potsdam, Germany, CD-ROM

  • McFadden L, Nicholls RJ, Vafeidis AT, Tol RSJ (2007) A methodology for modeling coastal space for global assessment. J Coast Res 23(4):911–920

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Emissions scenarios. Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nicholls RJ (2000) Coastal Zones. In: Parry ML (ed) Assessment of the potential effects of climate change in Europe. Jackson Environment Institute, University of East Anglia, pp 243–259

    Google Scholar 

  • Nicholls RJ (2002) Rising sea levels: potential impacts and responses. In: Hester R, Harrison RM (eds) Global environmental change. issues in environmental science and technology, vol 17. Royal Society of Chemistry, Cambridge, pp 83–107

    Google Scholar 

  • Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob Environ Change 14(1):69–86

    Article  Google Scholar 

  • Nicholls RJ, Hoozemans F, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Change 9:69–87

    Article  Google Scholar 

  • Nicholls RJ, Klein RJT (2005) Climate change and coastal management on Europe’s coast. Managing European Coasts: Past, Present and Future, J. E. Vermaat et al, Eds., Springer, Environmental Science Monograph Series, pp 199–225

  • Nicholls R, Wong P, Burkett V, Codignotto J, Hay J, McLean R, Ragoonaden S, Woodroffe C (2007) Coastal systems and low-lying areas. In: Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Nicholls RJ, de la Vega-Leinert AC (Guest Editors) (2008) Implications of sea-level rise for Europe’s coasts. Journal of Coastal Research 24 (2), 285–442

    Google Scholar 

  • Peltier W (2000) Global glacial isostatic adjustment and modern instrumental records of relative sea level history. Sea Level Rise: History and Consequences 75, 65–95

    Google Scholar 

  • Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Climate Dyn 16(1):1–17

    Article  Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography missiona new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57(4):241–262

    Article  Google Scholar 

  • Richards J, Nicholls RJ (2009) Impacts of climate change in coastal systems in Europe. PESETA-Coastal Systems study. JRC Scientific and Technical Reports EUR 24130 EN, 124 pp. http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=2979

  • Rochelle-Newall E, Klein R, Nicholls R, Barrett K, Behrendt H, Bresser T, Cieslak A, de Bruin E, Edwards T, Herman P et al. (2005) Group report: global change and the European coast–climate change and economic development. Managing European coasts: past, present and future, pp 239–254

  • Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S (2005) An assessment of the SRTM topographic products. Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena

  • Rotmans J, Hulme M, Downing TE (1994) Climate change implications for Europe. Glob Environ Change 4(2):97–124

    Article  Google Scholar 

  • Schijf J, Schnfeld J (1953) Theoretical considerations on the motion of salt and fresh water. Proceedings of the Minnesota International Hydraulics Convention. Joint meeting of the International Association for Hydraulic Research and the Hydraulics Division of the American Society of Civil Engineers, Minnesota, 1–4 September 1953, St. Anthony Falls Hydraulic Laboratory, pp 321–333

  • Stive MJ, Capobianco M, Wang Z, Ruol P, Buijsman M (1998) Morphodynamics of a tidal lagoon and the adjacent coast. In: Dronkers J, Scheffers M (eds) Physics of Estuaries and coastal seas. Balkema, Rotterdam, pp 397–407

    Google Scholar 

  • Swart R, Mitchell J, Morita T, Raper S (2002) Stabilisation scenarios for climate impact assessment. Glob Environ Change 12(3):155–165

    Article  Google Scholar 

  • Tol RSJ (2006) The DIVA model: socio-economic scenarios, impacts and adaptation and world heritage. DINAS-COAST Consortium, 2006. Diva 1.5.5. Potsdam Institute for Climate Impact Research, Potsdam, Germany, CD-ROM

  • Tol RSJ, Yohe GW (2007) The weakest link hypothesis for adaptive capacity: an empirical test. Glob Environ Change 17:218–227

    Article  Google Scholar 

  • Tol RSJ, Klein RJT, Nicholls RJ (2008) Towards successful adaptation to sea-level rise along Europe’s coasts. J Coast Res 24(2):432–450

    Article  Google Scholar 

  • Tol RSJ et al. (2010) Flooding and sea level rise: an application of DIVA, forthcoming

  • Vafeidis AT, Boot G, Cox J, Maatens R, Mcfadden L, Nicholls RJ, Tol RSJ (2006) The DIVA Database Documentation. Technical report

  • Vafeidis AT, Nicholls RJ, McFadden L, Tol RSJ, Hinkel J, Spencer T, Grashoff PS, Boot G, Klein R (2008) A new global coastal database for impact and vulnerability analysis to sea-level rise. J Coast Res 24(4):917–924

    Article  Google Scholar 

  • van Goor M, Zitman T, Wang Z, Stive M (2003) Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar Geol 202:211–227

    Article  Google Scholar 

  • van Koningsveld M, Mulder JPM, Stive MJF, van der Valk L, van der Weck AW (2008) Living with sea-level rise and climate change: a case study of the Netherlands. J Coast Res 24(2):367–379

    Article  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. PNAS 106(51):21527–21532

    Article  Google Scholar 

  • von Storch H, Woth K (2008) Storm surges: perspectives and options. Sustainability Science 3(1)

  • Woodworth PL, Blackman DL (2004) Evidence for systematic changes in extreme high waters since the mid-1970s. J Climate 17(6):1190–1197

    Article  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2000) Twentieth century storm activity along the U.S. East Coast. J Climate 13:1748–1761

    Article  Google Scholar 

  • Zhang K, Douglas B, Leatherman S (2004) Global warming and coastal erosion. Clim Change 64:41–58

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly financed by the Environmental Protection Agency Germany (UBA Dessau) and the European Environment Agency (EEA; contract number Z6-002595707). The first version of the DIVA model was developed within the project DINAS-COAST, which was funded by the European Commission’s Directorate-General Research (contract number EVK2-2000-22024). We thank Torsten Grothman, Stéphane Isoard, André Jol, Zbyszek Kundzewicz, Andrus Meiner, Manuel Winograd, Reinhard Mechler and two anonymous reviewers for their helpful comments on earlier versions of this paper and Lars Exner for his technical support in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Hinkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinkel, J., Nicholls, R.J., Vafeidis, A.T. et al. Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitig Adapt Strateg Glob Change 15, 703–719 (2010). https://doi.org/10.1007/s11027-010-9237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-010-9237-y

Keywords

Navigation