Skip to main content

Advertisement

Log in

Forest Fires and Climate Change in the 21ST Century

  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Fire is the major stand-renewing disturbance in the circumboreal forest. Weather and climate are the most important factors influencing fire activity and these factors are changing due to human-caused climate change. This paper discusses and synthesises the current state of fire and climate change research and the potential direction for future studies on fire and climate change. In the future, under a warmer climate, we expect more severe fire weather, more area burned, more ignitions and a longer fire season. Although there will be large spatial and temporal variation in the fire activity response to climate change. This field of research allows us to better understand the interactions and feedbacks between fire, climate, vegetation and humans and to identify vulnerable regions. Lastly, projections of fire activity for this century can be used to explore options for mitigation and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amiro, B.D.: 2001, ‘Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest’, Global Change Biol. 7, 253–268.

    Article  Google Scholar 

  • Amiro, B.D., Barr, A.G., Black, T.A., Iwashita, H., Kljun, N., JMcCaughey, J.H., Morgenstern, K., Murayama, S., Nesic, Z., Orchansky, A.L. and Saigusa, N.: 2005, ‘Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada’, Agric. and Forest Meteorol. In press.

  • Amiro, B.D., MacPherson, J.I., Desjardins, R.L., Chen, J.M. and Liu, J.: 2003, ‘Post-fire carbon dioxide fluxes in the western Canadian boreal forest: Evidence from towers, aircraft and remote sensing’, Agric. and Forest Meteorol. 115, 91–107.

    Article  Google Scholar 

  • Amiro, B.D., Todd, J.B., Wotton, B.M., Logan, K.A., Flannigan, M.D., Stocks, B.J., Mason, J.A., Martell, D.L. and Hirsch, K.G.: 2001, ‘Direct carbon emissions from Canadian forest fires, 1959 to 1999’, Can. J. For. Res. 31, 512–525.

    Article  Google Scholar 

  • Anderson, K.: 2002, ‘A model to predict lightning-caused fire occurrences’, Intl J. Wildland Fire 11, 163–172.

    Article  Google Scholar 

  • Baldocchi, D.D. et al.: 2001, ‘FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities’, Bull. Am. Meteorol. Soc. 82, 2415–2434.

    Article  Google Scholar 

  • Bergeron, Y. and Flannigan, M.D.: 1995, ‘Predicting the effects of climate change on fire frequency in the southeastern Canadian boreal forest’, Water, Air, Soil Pollut. 82, 437–444.

    Article  Google Scholar 

  • Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A. and Lefort, P.: 2004, ‘Past, current and future fire frequency in the Canadian boreal forest: Implications for sustainable forest management’, Ambio 33, 356–360.

    Article  Google Scholar 

  • Chambers, S.D. and Chapin III, F.S.: 2002, ‘Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate’, J. Geophys. Res. 107, doi:10.1029/2001JD000530.

  • Duffy, P.A., Walsh, J.E., Graham, J.M., Mann, D.H. and Rupp, T.S.: 2005, ‘Impacts of large scale atmospheric – ocean variability on Alaskan fire season severity’, Ecolog. Applic. In press.

  • Flannigan, M.D., Bergeron, Y., Engelmark, O. and Wotton, B.M.: 1998, ‘Future wildfire in circumboreal forests in relation to global warming’, J. Vegetat. Sci. 9, 469–476.

    Article  Google Scholar 

  • Flannigan, M.D., Logan, K.A., Amiro, B.D., Skinner, W.R. and Stocks, B.J.: 2005, ‘Future area burned in Canada’, Climatic Change, In press.

  • Flannigan, M.D., Stocks, B.J. and Wotton, B.M.: 2000, ‘Forest fires and climate change’, Sci, of the Total Environ 262, 221–230.

    Article  Google Scholar 

  • Flannigan, M.D. and Wotton, B.M.: 2001, ‘Climate, weather and area burned’, in E.A. Johnson and K. Miyanishi (eds.), Forest Fires: Behavior & Ecological Effects, Academic Press, pp. 335–357.

  • Flannigan, M.D. and Van Wagner, C.E.: 1991, ‘Climate Change and wildfire in Canada’, Can. J. For. Res. 21, 66–72.

    Article  Google Scholar 

  • Fleming, R.A., Candau, J-N. and McAlpine, R.S.: 2002, ‘Landscape-scale analysis of interactions between insect defoliation and forest fire in central Canada, Climatic Change 55, 251–272.

    Article  Google Scholar 

  • Gillett, N.P., Weaver, A.J., Zwiers, F.W. and Flannigan, M.D.: 2004, ‘Detecting the effect of climate change on Canadian forest fires’, Geophys. Res. Lett. 31(18), L18211, doi:10.1029/ 2004GL020876.

  • Hely, C., Flannigan, M.D. and Bergeron, Y.: 2003, ‘Modeling tree mortality following wildfire in the southeastern Canadian mixed-wood boreal forest’, For. Sci. 49, 566–576.

    Google Scholar 

  • Intergovernmental Panel on Climate Change: 2001, Climate Change 2001 The Scientific Basis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Johnson, E.A.: 1992, Fire and Vegetation Dynamics: Studies from the North American Boreal Forest, Cambridge University Press, Cambridge, 125 pp.

    Book  Google Scholar 

  • Johnston, M.: 2001, ‘Sensitivity of boreal forest landscapes to climate change. SRC’ Publication No. 11341-6E01. Prepared for the Government of Canada's Climate Change Action Fund. Saskatchewan Research Council, Saskatoon, SK.

  • Keane, R.E., Cary, G., Davies, I.D., Flannigan, M.D., Gardner, R.H., Lavorel, S., Lenihan, J.M., Li, C. and Rupp, T.S.: 2004, ‘A classification of landscape fire succession models: Spatially explicit models of fire and vegetation dynamics’, Eco. l. Mod. 179, 3–27.

    Article  Google Scholar 

  • Keane, R.E., Cary, G., Davies, I.D., Flannigan, M.D., Gardner, R.H., Lavorel, S., Lenihan, J.M., Li, C. and Rupp, T.S.: 2005, ‘Understanding global fire dynamics by classifying and comparing spatial models of vegetation and fire dynamics’, in J. Canell, D. Patalki and L. Patalka (eds.), Terrestrial Ecosystems in a Changing World. GCTE Synthesis Book, Cambridge University Press, Cambridge, U.K.

  • Kurz, W.A., Apps, M.J., Stocks, B.J. and Volney, W.J.A.: 1994, ‘Global climate change: Disturbance regimes and biospheric feedbacks of temperate and boreal forests’, in G. Woodwell (ed.), Biotic Feedbacks in the Global Climate System: Will the Warming Speed the Warming? Oxford Univ. Press, Oxford, UK, pp. 119–133.

    Google Scholar 

  • Lavorel, S., Flannigan, M.D., Lambin, E.F. and Scholes, M.C.: 2005, ‘Vulnerability of land systems to fire: Interactions between humans, climate, the atmosphere and ecosystems’, Mitigation and Adaptation Strategies for Global Change, In press.

  • Lenihan, J.M., Daly, C., Bachelet, D. and Neilson, R.P.: 1998, ‘Simulating broad-scale fire severity in a dynamic global vegetation model’, Northwest Science 72, 91–103.

    Google Scholar 

  • Litvak, M., Miller, S., Wofsy, S.C. and Goulden, M.: 2003, ‘Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest’, J. Geophys. Res. doi:10.1029/2001JD000854.

  • Liu, H.P., Randerson, J.T., Lindfors, J. and Chapin III, F.S.: 2005, ‘Changes in the surface energy budget following fire in boreal ecosystems of interior Alaska: An annual perspective’, J. Geophys. Res, In press.

  • Lupo, A.R., Oglesby, R.J. and Mokhov, I.I.: 1997, ‘Climatological features of blocking anticyclones: A study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmosphere’, Clim. Dynam. 13, 181–195.

    Article  Google Scholar 

  • Lyons, W.A., Nelson, T.E., Williams, E.R., Cramer, J.A. and Turner, T.R.: 1998, ‘Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires’, Science 282, 80.

    Article  Google Scholar 

  • McAlpine, R.S. and Hirsch, K.G.: 1999, ‘An overview of Leopards: The level of protection analysis system’, For. Chron. 75, 615–621.

    Article  Google Scholar 

  • Mearns, L.O., Schneider, S.H., Thompson, S.L. and McDaniel, L.R.: 1989, ‘Climate variability statistics from General Circulation models as applied to climate change analysis’, in G.P. Malanson, (ed.), pp. 51–73. ‘Natural Areas Facing Climate Change’, SPB Academic Publishing, The Hague.

    Google Scholar 

  • Price, C. and Rind, D.: 1994, ‘The impact of a 2 × CO2 Climate on lightning-caused fires’, J. Clim. 7, 1484–1494.

    Article  Google Scholar 

  • Rosenfeld, D.: 1999, ‘TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall’, Geophys. Res. Let. 26, 3105–3108.

    Article  Google Scholar 

  • Simmonds, P.G., Manning, A.J., Derwent, R.G., Ciais, P., Ramonet, M., Kazan, V. and Ryall, D.: 2005, ‘A burning question. Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events’, Atmospheric Environ. 39, 2513–2517.

    Article  Google Scholar 

  • Skinner, W.R., Flannigan, M.D., Stocks, B.J., Martell, D.M., Wotton, B.M., Todd, J.B. Mason, J.A., Logan, K.A. and Bosch, E.M.: 2001, ‘A 500 mb synoptic wildland fire climatology from large Canadian forest fires, 1959-1996’, Theoret. Appl. Climatol. 71, 157–169.

    Article  Google Scholar 

  • Skinner, W.R., Stocks, B.J., Martell, D.L., Bonsal, B. and Shabbar, A.: 1999, ‘The association between circulation anomalies in the mid-troposphere and area burned by wildland fire in Canada’, Theoret. Appl. Climatol. 63, 89–105.

    Article  Google Scholar 

  • Solomon, A.M. and Leemans, R.: 1997, ‘Boreal forest carbon stocks and wood supply: Past, present and future responses to changing climate, agriculture and species availability’, Agric. For. Meteorol. 84, 137–151.

    Article  Google Scholar 

  • Stocks, B.J.: 1993, ‘Global warming and forest fires in Canada’, For. Chron. 69, 290–293.

    Article  Google Scholar 

  • Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J-Z., Lawrence, K., Hartley, G.R., Mason, J.A. and McKenney, D.W.: 1998, ‘Climate change and forest fire potential in Russian and Canadian boreal forests’, Climatic Change 38, 1–13.

    Article  Google Scholar 

  • Stocks, B.J., Mason, J.A., Todd, J.B., Bosch, E.M., Wotton, B.M., Amiro, B.D., Flannigan, M.D., Hirsch, K.G., Logan, K.A., Martell, D.L. and Skinner, W.R.: 2002, ‘Large forest fires in Canada, 1959–1997’, J. Geophys. Res. 107, 8149, doi:10.1029/2001JD000484.

  • Swetnam, T.W.: 1993, ‘Fire history and climate change in giant sequoia groves’, Science 262, 885–889.

    Article  Google Scholar 

  • Thonicke, K., Venevsky, S., Sitch, S. and Cramer, W.: 2001, ‘The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Vegetation Model’, Global Ecology and Biogeogr. 10, 661–678.

    Article  Google Scholar 

  • Weber, M.G. and Flannigan, M.D.: 1997, ‘Canadian boreal forest ecosystem structure and function in a changing climate: Impacts on fire regimes’, Environ. Rev. 5, 145–166.

    Article  Google Scholar 

  • Wotton, B.M. and Flannigan, M.D.: 1993, ‘Length of the fire season in a changing climate’, For. Chron. 69, 187–192.

    Article  Google Scholar 

  • Wotton, B.M., Martell, D.L. and Logan, K.A.: 2003, ‘Climate change and people-caused forest fire occurrence in Ontario’, Climatic Change 60, 275–295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Flannigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flannigan, M.D., Amiro, B.D., Logan, K.A. et al. Forest Fires and Climate Change in the 21ST Century. Mitig Adapt Strat Glob Change 11, 847–859 (2006). https://doi.org/10.1007/s11027-005-9020-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-005-9020-7

Keywords

Navigation