Skip to main content
Log in

Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We study the energy decay of the solutions of a linear homogeneous anisotropic thermoelastic diffusion system with second sound and dissipative boundary of the form

$$\mathbf{T}(x,t)n(x) = -\gamma_0v(x,t) -\int_0^\infty \lambda(s)v^t(x,s) ds. $$

This boundary condition well describes a material for which the domain outside the body consists in a material of viscoelastic type. Models of boundary conditions including a memory term which produces damping were proposed in Fabrizio and Morro (Arch. Ration. Mech. Anal. 136:359–381, 1996) in the context of Maxwell equations and in Propst and Prüss (J. Integral Equ. Appl. 8:99–123, 1996) for sound evolution in a compressible fluid.

The thermal and diffusion disturbances are modeled by Cattaneo-Maxwell law for heat and diffusion equations to remove the physical paradox of infinite propagation speed in the classical theory within Fourier’s law. The system of equations in this case is a coupling of three hyperbolic equations. By introducing a boundary free energy, we prove that, if the kernel λ exponentially decays in time then also the energy exponentially decays. Finally, we generalize the obtained results to the Gurtin-Pipkin model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fabrizio M, Morro A (1996) A boundary condition with memory in electromagnetism. Arch Ration Mech Anal 136:359–381

    Article  MathSciNet  MATH  Google Scholar 

  2. Propst G, Prüss J (1996) On wave equations with boundary dissipation of memory type. J Integral Equ Appl 8:99–123

    Article  MATH  Google Scholar 

  3. Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  ADS  MATH  Google Scholar 

  4. Cattaneo C (1948) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83–101

    MathSciNet  Google Scholar 

  5. Tarabek MA (1992) On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound. Q Appl Math 50:727–742

    MathSciNet  MATH  Google Scholar 

  6. Racke R (2002) Thermoelasticity with second sound ó exponential stability in linear and nonlinear 1-d. Math Methods Appl Sci 25:409–441

    Article  MathSciNet  MATH  Google Scholar 

  7. Racke R (2003) Asymptotic behavior of solutions in linear 2- or 3-d thermoelasticity with second sound. Q Appl Math 61:315–328

    MathSciNet  MATH  Google Scholar 

  8. Messaoudi SA, Said-Houari B (2005) Exponential stability in one-dimensional non-linear thermoelasticity with second sound. Math Methods Appl Sci 28:205–232

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang YG, Yang L (2006) L pL q decay estimates for Cauchy problems of linear thermoelastic systems with second sound in 3-d. Proc R Soc Edinb A 136:189–207

    Article  MATH  Google Scholar 

  10. Irmscher T, Racke R (2006) Sharp decay rates in parabolic and hyperbolic thermoelasticity. IMA J Appl Math 71:459–478

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang YG, Racke R (2008) Asymptotic behavior of discontinuous solutions in 3-d thermoelasticity with second sound. Q Appl Math 66:707–724

    MathSciNet  MATH  Google Scholar 

  12. Wang YG, Racke R (2008) Nonlinear well-posedness and rates of decay in thermoelasticity with second sound. J Hyperbolic Differ Equ 5:25–43

    Article  MathSciNet  Google Scholar 

  13. Wang YG, Li Z (2010) Asymptotic behavior of reflection of discontinuities in thermoelasticity with second sound in one space variable. Z Angew Math Phys 61:1033–1051

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurtin ME, Pipkin AC (1968) A general theory of heat conduction with finite wave speeds. Arch Ration Mech Anal 31:113–126

    Article  MathSciNet  MATH  Google Scholar 

  15. Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61:41–73

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Joseph DD, Preziosi L (1990) Addendum to the paper: heat waves. Rev Mod Phys 62:375–391

    Article  MathSciNet  ADS  Google Scholar 

  17. Fatori LH, Rivera JEM (2001) Energy decay for hyperbolic thermoelastic systems of memory type. Q Appl Math 59:441–458

    MATH  Google Scholar 

  18. Rivera JEM, Qin Y (2004) Global existence and exponential stability of solutions to thermoelastic equations of hyperbolic type. J Elast 75:125–145

    MathSciNet  MATH  Google Scholar 

  19. Amendola G, Lazzari B (1998) Stability and energy decay rates in linear thermoelasticity. Appl Anal 70:19–33

    Article  MathSciNet  MATH  Google Scholar 

  20. Nowacki W (1974) Dynamical problems of thermoelastic diffusion in solids I. Bull Acad Pol Sci, Sér Sci Tech 22:55–64. 129–135, 257–266

    MathSciNet  Google Scholar 

  21. Sherief HH, Hamza F, Saleh H (2004) The theory of generalized thermoelastic diffusion. Int J Eng Sci 42:591–608

    Article  MathSciNet  MATH  Google Scholar 

  22. Aouadi M (2011) Exponential stability in hyperbolic thermoelastic diffusion problem. Int J Differ Equ, Article ID 274843, 21 pp

  23. Aouadi M, Soufyane A (2010) Polynomial and exponential stability for one-dimensional problem in thermoelastic diffusion theory. Appl Anal 89:935–948

    Article  MathSciNet  MATH  Google Scholar 

  24. Aouadi M (2010) A contact problem of a thermoelastic diffusion rod. Z Angew Math Mech 90:278–286

    Article  MathSciNet  MATH  Google Scholar 

  25. Aouadi M (2008) Generalized theory of thermoelastic diffusion for anisotropic media. J Therm Stresses 31:270–285

    Article  Google Scholar 

  26. Aouadi M (2008) Qualitative aspects in the coupled theory of thermoelastic diffusion. J Therm Stresses 31:706–727

    Article  Google Scholar 

  27. Bosello CA, Lazzari B, Nibbi R (2007) A viscous boundary condition with memory in linear elasticity. Int J Eng Sci 45:94–110

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao H, Munoz Rivera JE (2001) On the exponential stability of thermoelastic problem with memory. Appl Anal 78:379–403

    Article  MathSciNet  MATH  Google Scholar 

  29. Lazzari B, Nibbi R (2007) On the energy decay of a linear hyperbolic thermoelastic system with dissipative boundary. J Therm Stresses 30:1159–1172

    Article  Google Scholar 

  30. Lazzari B, Nibbi R (2008) On the exponential decay in thermoelasticity without energy dissipation and of type III in the presence of an absorbing boundary. J Math Anal Appl 338:317–329

    Article  MathSciNet  MATH  Google Scholar 

  31. Aouadi M, Lazzari B, Nibbi R (2012) Exponential decay in thermoelastic materials with voids and dissipativity boundary without thermal dissipation. Z Angew Math Phys 63:961–973

    Article  MathSciNet  MATH  Google Scholar 

  32. Del Piero G, Deseri L (1997) On the Concept of state and free energy in linear viscoelasticity. Arch Ration Mech Anal 138:1–35

    Article  MathSciNet  MATH  Google Scholar 

  33. Deseri L, Fabrizio M, Golden JM (2006) The Concept of minimal state in viscoelasticity: new free energies and applications to PDEs. Arch Ration Mech Anal 181:43–96

    Article  MathSciNet  MATH  Google Scholar 

  34. Graffi D (1974) Sull’espressione dell’energia libera nei materiali viscoelastici lineari. Ann Mat Pura Appl 98:273–279

    Article  MathSciNet  MATH  Google Scholar 

  35. Deseri L, Golden JM (2007) The minimum free energy for continuous spectrum materials. SIAM J Appl Math 63(3):869–892

    Article  MathSciNet  Google Scholar 

  36. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Applied mathematical Sciences, vol 44. Springer, New York

    Book  MATH  Google Scholar 

  37. Da Prato G, Sinestrari E (1987) Differential operators with non-dense domain. Ann Sc Norm Super Pisa, Cl Sci 14:285–344

    MATH  Google Scholar 

  38. Lagnese JE (1983) Decay of solutions of wave equations in a bounded region with boundary dissipation. J Differ Equ 50:163–182

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Lazzari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouadi, M., Lazzari, B. & Nibbi, R. Energy decay in thermoelastic diffusion theory with second sound and dissipative boundary. Meccanica 48, 2159–2171 (2013). https://doi.org/10.1007/s11012-013-9731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9731-x

Keywords

Navigation