Skip to main content
Log in

Locally similar solutions for hydromagnetic and thermal slip flow boundary layers over a flat plate with variable fluid properties and convective surface boundary condition

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents heat transfer process in a two-dimensional steady hydromagnetic convective flow of an electrically conducting fluid over a flat plate with partial slip at the surface of the boundary subjected to the convective surface heat flux at the boundary. The analysis accounts for both temperature-dependent viscosity and temperature dependent thermal conductivity. The local similarity equations are derived and solved numerically using the Nachtsheim-Swigert iteration procedure. Results for the dimensionless velocity, temperature and ambient Prandtl number within the boundary layer are displayed graphically delineating the effect of various parameters characterizing the flow. The results show that momentum boundary layer thickness significantly depends on the surface convection parameter, Hartmann number and on the sign of the variable viscosity parameter. The results also show that plate surface temperature is higher when there is no slip at the plate compared to its presence. For both slip and no-slip cases surface temperature of the plate can be controlled by controlling the strength of the applied magnetic field. In modelling the thermal boundary layer flow with variable viscosity and variable thermal conductivity, the Prandtl number must be treated as a variable irrespective of flow conditions whether there is slip or no-slip at the boundary to obtain realistic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant appears in (9)

a :

surface convection parameter

B :

magnetic induction [Wb m−2]

B 0 :

constant

C f :

local skin-friction coefficient

c :

constant

c p :

specific heat at constant pressure [kJ kg−1 K−1]

f :

dimensionless stream function

Ha:

Hartmann number

h w :

convective heat transfer coefficient [W m−2 K−1]

L :

slip length [m]

Kn x,L :

local Knudsen number based on slip length

Kn x,δ :

local Knudsen number based on mean free path

Nu x :

local Nusselt number

Pr :

variable Prandtl number

Pr  :

ambient Prandtl number

Re x :

local Reynolds number

T r :

constant appears in (9)

T w :

temperature at the surface of the plate [K]

T :

temperature of the fluid within the boundary layer [K]

T :

temperature of the ambient fluid [K]

U :

free stream velocity [m s−1]

u,v :

the x- and y-components of the velocity field [m s−1]

x,y :

distance along and normal to the plate [m]

ρ :

fluid density [kg m−3]

ε :

thermal conductivity parameter

μ :

dynamic viscosity [Pa s]

μ :

dynamic viscosity at ambient temperature [Pa s]

υ :

kinematic viscosity [m2 s−1]

δ :

slip parameter

σ :

tangential momentum accommodation coefficient

σ 0 :

magnetic permeability [N A−2]

λ :

mean free path [m]

ψ :

stream function [m2 s−1]

η :

similarity variable

θ :

dimensionless temperature

θ r :

variable viscosity parameter

κ :

thermal conductivity [W m−1 K−1]

κ :

thermal conductivity at ambient temperature [W m−1 K−1]

γ :

constant appears in (8)

w;∞:

surface condition; ambient condition

References

  1. Blasius H (1908) Grenzschichten in Flussigkeiten mit kleiner Reibung. Z Math Phys 56(1):1–37

    MathSciNet  MATH  Google Scholar 

  2. Howarth L (1938) On the solution of the laminar boundary layer equations. Proc R Soc Lond A 64:547–579

    Article  ADS  MATH  Google Scholar 

  3. Abussita AMM (1994) A note on a certain boundary layer equation. Appl Math Comput 64:73–77

    Article  MathSciNet  Google Scholar 

  4. Wang L (2004) A new algorithm for solving classical Blasius equation. Appl Math Comput 157:1–9

    Article  MathSciNet  MATH  Google Scholar 

  5. Cortell R (2005) Numerical solutions of the classical Blasius flat plate problem. Appl Math Comput 170:706–710

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang T, Fang G, Lee C-FF (2006) A note on the extended Blasius equation. Appl Math Lett 19:613–617

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang T, Zhang J, Yao S (2009) Slip MHD viscous flow over stretching sheet—an exact solution. Commun Nonlinear Sci Numer Simul 14:3771–3737

    ADS  Google Scholar 

  8. Kays WM, Crawford ME (1980) Convective heat and mass transfer. McGraw Hill, New York, pp 51–54

    Google Scholar 

  9. Shu JJ, Pop I (1988) On thermal boundary layers on a flat plate subjected to a variable heat flux. Int J Heat Fluid Flow 19:79–84

    Article  Google Scholar 

  10. Bejan A (2004) Convective heat transfer, 3rd edn. Wiley, New York, pp 84

    MATH  Google Scholar 

  11. Incropera FP et al. (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, New York

    Google Scholar 

  12. Bataller RC (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J Mater Process Technol 203:176–183

    Article  Google Scholar 

  13. Cortell R (2010) Suction, viscous dissipation and thermal radiation effects on the flow and heat transfer of a power-law fluid past an infinite porous plate. Chem Eng Res Des. doi:10.1016/j.cherd.2010.04.017

    Google Scholar 

  14. Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068

    Article  ADS  MathSciNet  Google Scholar 

  15. Bataller RC (2008) Radiation effects for the Blassius and Sakiadis flows with a convective surface boundary condition. Appl Math Comput 206:832–840

    Article  MathSciNet  MATH  Google Scholar 

  16. Ishak A (2010) Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition. Appl Math Comput 217:837–842

    Article  MathSciNet  MATH  Google Scholar 

  17. Yao S, Fang T, Zhong Y (2011) Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Commun Nonlinear Sci Numer Simul 16:752–760

    Article  ADS  MATH  Google Scholar 

  18. Yoshimura A, Prudhomme RK (1998) Wall slip corrections for Couette and parallel disc viscometers. J Rheol 32:53–67

    Article  Google Scholar 

  19. Hasimoto H (1958) Boundary layers slip solutions for a flat plate. J Aeronaut Sci 25:68–69

    MathSciNet  MATH  Google Scholar 

  20. Martin MJ, Boyd ID (2000) Blasius boundary layer with slip flow conditions. In: Bartel TJ, Gallis MA (eds) 22nd Rarefied gas dynamics symposium, Sydney, Australia, July 2000

    Google Scholar 

  21. Martin MJ, Boyd ID (2006) Momentum and heat transfer in laminar boundary layer with slip flow. J Thermophys Heat Transf 20:710–719

    Article  Google Scholar 

  22. Martin MJ, Boyd ID (2010) Falkner-Skan flow over a wedge with slip boundary conditions. J Thermophys Heat Transf 24:263–270

    Article  Google Scholar 

  23. Vedantam NK (2006) Effects of slip on the flow characteristics of a laminar flat plate boundary layer. In: Proceedings of ASME fluids engineering summer meeting, Miami, Florida, July 17–20, 2006, pp 1551–1560

    Google Scholar 

  24. Fang T, Lee CF (2005) A moving wall boundary layer flow of slightly rarefied gas free stream over a moving flat plate. Appl Math Lett 18:487–495

    Article  MathSciNet  MATH  Google Scholar 

  25. Andersson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121–125

    Article  MATH  Google Scholar 

  26. Wang CY (2002) Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equations. Chem Eng Sci 57:3745–3747

    Article  Google Scholar 

  27. Wang CY (2006) Stagnation slip flow and heat transfer on a moving plate. Chem Eng Sci 61:7668–7672

    Article  ADS  Google Scholar 

  28. Wang CY (2009) Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal Real World Appl 10:375–380

    Article  MathSciNet  MATH  Google Scholar 

  29. Aziz A (2010) Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition. Commun Nonlinear Sci Numer Simul 15:573–580

    Article  ADS  MathSciNet  Google Scholar 

  30. Sahoo B (2010) Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip. Commun Nonlinear Sci Numer Simul 15:602–615

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Szeri AZ, Rajagopal KR (1985) Flow of a non-Newtonian fluid between heated parallel plates. Int J Non-Linear Mech 20:91–101

    Article  MathSciNet  MATH  Google Scholar 

  32. Herwig H, Wickern G (1986) The effect of variable properties on laminar boundary layer flow. Wärme Stoffübertrag 20:47–57

    Article  ADS  Google Scholar 

  33. Pop I, Gorla RSR, Rashidi M (1992) The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate. Int J Eng Sci 30:1–6

    Article  Google Scholar 

  34. Elbashbeshy EMA, Bazid MAA (2000) The effect of temperature dependent viscosity on heat transfer over a continuous moving surface. J Phys D, Appl Phys 33:2716–2721

    Article  ADS  MATH  Google Scholar 

  35. Makinde OD (2001) Heat and mass transfer in a pipe with moving surface effect of viscosity variation and energy dissipation. Quaest Math 24:93–104

    Article  MathSciNet  MATH  Google Scholar 

  36. Fang T (2004) Influences of fluid property variation on the boundary layers of a stretching surface. Acta Mech 171:105–118

    Article  MATH  Google Scholar 

  37. Mukhopadhyay S, Layek GC, Samad SkA (2005) Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. Int J Heat Mass Transf 48:4460–4466

    Article  MATH  Google Scholar 

  38. Ali E (2006) The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface. Int J Therm Sci 45:60–69

    Article  Google Scholar 

  39. Makinde OD (2006) Laminar falling liquid film with variable viscosity along an inclined heated plate. Appl Math Comput 175:80–88

    Article  MathSciNet  MATH  Google Scholar 

  40. Yürüsoy M, Pakdemirli M, Yilbaş BS (2008) Perturbation solution for a third grade fluid flowing between parallel plates. Proc Inst Mech Eng Part C, J Mech Eng Sci 222:653–656

    Article  Google Scholar 

  41. Alam MS, Rahman MM, Sattar MA (2009) Transient magnetohydrodynamic free convective heat and mass transfer flow with thermophoresis past a radiate inclined permeable plate in the presence of variable chemical reaction and temperature dependent viscosity. Nonlinear Anal Model Control 14:3–20

    MATH  Google Scholar 

  42. Chiam TC (1996) Heat transfer with variable conductivity in a stagnation-point flow towards a stretching sheet. Int Commun Heat Mass Transf 23:239–248

    Article  Google Scholar 

  43. Chiam TC (1998) Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. Acta Mech 129:63–72

    Article  MATH  Google Scholar 

  44. Datti PS, Prasad KV, Abel MS, Joshi A (2004) MHD visco-elastic fluid flow over a non-isothermal stretching sheet. Int J Eng Sci 42:935–946

    Article  MATH  Google Scholar 

  45. Prasad KV, Abel MS, Khan SK (2000) Momentum and heat transfer in viscoelastic fluid flow in a porous medium over a non-isothermal stretching sheet. Int J Numer Meth Heat Fluid Flow 10:786–802

    Article  MATH  Google Scholar 

  46. Abel MS, Prasad KV, Ali M (2005) Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface. Int J Therm Sci 44:465–476

    Article  Google Scholar 

  47. Prasad KV, Vajravelu K (2009) Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet. Int J Heat Mass Transf 152:4956–4965

    Article  MATH  Google Scholar 

  48. Prasad KV, Pal D, Umesh V, Rao NSP (2010) The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet. Commun Nonlinear Sci Numer Simul 15:331–344

    Article  ADS  MATH  Google Scholar 

  49. Abel MS, Siddheshwar PG, Mahesha N (2009) Effects of thermal buoyancy and variable thermal conductivity on the MHD flow and heat transfer in a power-law fluid past a vertical stretching sheet in the presence of a non-uniform heat source. Int J Non-Linear Mech 44:1–12

    Article  MATH  Google Scholar 

  50. Rahman MM, Salahuddin KM (2010) Study of hydromagnetic heat and mass transfer flow over an inclined heated surface with variable viscosity and electric conductivity. Commun Nonlinear Sci Numer Simul 15:2073–2085

    Article  ADS  MATH  Google Scholar 

  51. Rahman MM, Rahman MA, Samad MA, Alam MS (2009) Heat transfer in micropolar fluid along a non-linear stretching sheet with temperature dependent viscosity and variable surface temperature. Int J Thermophys 30(5):1649–1670

    Article  ADS  Google Scholar 

  52. Rahman MM, Aziz A, Al-Lawatia M (2010) Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties. Int J Therm Sci 49:993–1002

    Article  Google Scholar 

  53. Rahman MM (2010) Convective hydromagnetic slip flow with variable properties due to a porous rotating disk. Sultan Qaboos Univ J Sci 15:55–79

    Google Scholar 

  54. Ling JX, Dybbs A (1987) Forced convection over a flat plate submersed in a porous medium: variable viscosity case. ASME, Paper 87-WA/HT-23, ASME winter annual meeting, Boston, Massachusetts, pp 13–18

  55. Weast RC (1990) CRC handbook of chemistry and physics, 71st edn. CRC Press, Boca Raton

    Google Scholar 

  56. Knezevic D, Savic V (2006) Mathematical modeling of changing of dynamical viscosity, as a function of temperature and pressure, of mineral oils for hydraulic systems. Facta Univ, Ser Mech Eng 6:27–34

    Google Scholar 

  57. Yurusov M, Pakdemirli M (2002) Approximate analytical solutions for the flow of a third-grade fluid in a pipe. Int J Non-Linear Mech 37:187–195

    Article  MATH  Google Scholar 

  58. Savvas TA, Markatos NC, Papaspyrides CD (1994) On the flow of non-Newtonian polymer solutions. Appl Math Model 18:14–22

    Article  MATH  Google Scholar 

  59. Helmy KA (1995) MHD boundary layer equations for power law fluids with variable electric conductivity. Meccanica 30:187–200

    Article  MathSciNet  MATH  Google Scholar 

  60. Gad-el-Hak M (1999) The fluid mechanics of microdevices: The Freeman Scholar Lecture. J Fluid Eng 121:5–33

    Article  Google Scholar 

  61. Pantokratoras A (2002) Laminar free-convection over a vertical isothermal plate with uniform blowing or suction in water with variable physical properties. Int J Heat Mass Transf 45:963–977

    Article  MATH  Google Scholar 

  62. Pantokratoras A (2004) Further results on the variable viscosity on flow and heat transfer to a continuous moving flat plate. Int J Eng Sci 42:1891–1896

    Article  MATH  Google Scholar 

  63. Nachtsheim PR, Swigert P (1965) Satisfaction of the asymptotic boundary conditions in numerical solution of the system of non linear equations of boundary layer type. NASA TND-3004

  64. Alam MS, Rahman M, Samad MA (2006) Numerical study of the combined free-forced convection and mass transfer flow past a vertical porous plate in a porous medium with heat generation and thermal diffusion. Nonlinear Anal Model Control 11:331–343

    MATH  Google Scholar 

  65. Pantokratoras A (2009) A common error made in investigation of boundary layer flows. Appl Math Model 33:413–422

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.M. Locally similar solutions for hydromagnetic and thermal slip flow boundary layers over a flat plate with variable fluid properties and convective surface boundary condition. Meccanica 46, 1127–1143 (2011). https://doi.org/10.1007/s11012-010-9372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9372-2

Keywords

Navigation