Skip to main content
Log in

Pathogenesis of hepatic encephalopathy: lessons from nitrogen challenges in man

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Induction of hyperammonaemia with nitrogen challenge in man can be used to study the pathogenesis and treatment of hepatic encephalopathy complicating cirrhosis. Initially 20 g of glutamine was given orally as a flavored solution which resulted in doubling of blood ammonia concentration and this was associated with a deterioration in performance of the choice reaction time. The effect could have been due to a direct effect of glutamine rather than the ammonia generated so in subsequent experiments a glutamine free mixture of amino acids resembling the composition of haemoglobin was used (gastrointestinal bleeding is a known precipitant of hepatic encephalopathy). In Child grade B and C patients, 2–3 h after 54 g, slowing of the EEG was observed. The cerebral effects of induced hyperammonaemia were studied with diffusion weighted imaging and MR spectroscopy after giving 54 g of a mixture of threonine, serine and glycine when apparent diffusion coefficient increased. Also the change in ammonia levels correlated with the change in cerebral glutamine levels (r = 0.78, p = 0.002) suggesting intra cerebral formation of glutamine from ammonia and this may have accounted for the fall in cerebral myoinositol concentrations observed. Finally a colonic source for ammonia was confirmed by administering urea using colon coated capsules when ammonia concentrations slowly increased from 5 h after administration and rapidly after 10 h. In two patients the hyperammonaemia was ameliorated by pre treatment with Rifaximin 1200 mg per day for 1 week. Nitrogen challenge studies are thus a valuable model for studying new treatments for hepatic encephalopathy without the need to simultaneously treat precipitating factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al Mardini H, Leonard J, Bartlett K, Lloyd S, Record CO (1988) Effect of methionine loading and endogenous hypermethioninaemia on blood mercaptans in man. Clin Chim Acta 176:83–90

    Article  PubMed  CAS  Google Scholar 

  • Al Mardini H, Harrison EJ, Ince PG, Bartlett K, Record CO (1993) Brain indoles in human hepatic encephalopathy. Hepatology 17:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Al Mardini H, Douglass A, Record C (2006) Amino acid challenge in patients with cirrhosis and control subjects: ammonia, plasma amino acid and EEG changes. Metab Brain Dis 21:1–10

    Article  PubMed  CAS  Google Scholar 

  • Albrecht J, Norenberg M (2006) Glutamine: a Trojan Horse in neurotoxicity. Hepatology 44:788–794

    Article  PubMed  CAS  Google Scholar 

  • Balata S, DaminkSW O, Ferguson K, Marshall I, Hayes PC, Deutz NE et al (2003) Induced hyperammonemia alters neuropsychology, brain MR spectroscopy and magnetisation transfer in cirrhosis. Hepatology 37:931–939

    Article  PubMed  CAS  Google Scholar 

  • Basile A, Jones EA (1997) Ammonia and GABA-ergic neurotransmission: interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology 25:1303–1305

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (1997) Hepatic encephalopathy and brain oedema in acute hepatic failure: does glutamate play a role? Hepatology 25:1032–1034

    Article  PubMed  CAS  Google Scholar 

  • Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–645

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL (1990) Ammonia metabolism in normal and portacaval shunted rats. Adv ExpMed Biol 272:23–46

    Article  CAS  Google Scholar 

  • Cordoba S, Blei A (1997) Treatment of hepatic encephalopathy. Am J Gastroenterol 92:1429–1439

    PubMed  CAS  Google Scholar 

  • Cordoba J, Alonso J, Rovira A, Jacas C, Sanpedro F, Castells L et al (2001) The development of low-grade cerebral edema in cirrhosis is supported by the evolution of 1H-magnetic resonance abnormalities after liver transplantation. J Hepatol 35:598–604

    Article  PubMed  CAS  Google Scholar 

  • Dam G, Keiding S, Munk OL, Ott P, Vilstrup H, Bak LK et al. Hepatic Encephalopathy is Associated with Decreased Cerebral Oxygen Metabolism and Blood Flow, not Increased Ammonia Uptake. Hepatology 2012 in press

  • Deutz NEP, Dejong C, Soeters P (1996) Inter-organ ammonia and glutamine exchange during liver failure. In: Record CO, Al-Mardini HA (eds) Advances in hepatic encephalopathy and metabolism in liver disease. Medical Faculty, University of Newcastle Upon Tyne, UK, pp 87–99. ISBN 0947678115

    Google Scholar 

  • Douglass A, Al Mardini H, Record C (2001) Amino acid challenge in patients with cirrhosis: a model for the assessment of treatments for hepatic encephalopathy. J Hepatol 34:658–664

    Article  PubMed  CAS  Google Scholar 

  • Douglass A, Al Mardini H, Oppong K, Record CO (2003) An oral tryptophan challenge in cirrhotic patients: a psychometric and analysed EEG study. Metab Brain Dis 18:179–186

    Article  PubMed  CAS  Google Scholar 

  • Haussinger D, Schliess F (2009) Pathogenic mechanisms of hepatic encephalopathy. Gut 57:1156–1165

    Article  Google Scholar 

  • Hermenegildo C, Monfort P, Felipo V (2000) Activation of N-methyl-d-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterisation by in vivo brain microdialysis. Hepatology 31:709–715

    Article  PubMed  CAS  Google Scholar 

  • Jalan R, Kapoor D (2003) Enhanced renal ammonia excretion following volume expansion in patients with well compensated cirrhosis of the liver. Gut 52:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Jalan R, Olde Damink SWM, Lui HF, Glabus M, Deutz NEP, Hayes PC et al (2003) Oral amino acid load mimicking haemoglobin results in reduced regional cerebral perfusion and deterioration in memory tests in patients with cirrhosis of the liver. Met Brain Dis 18:37–49

    Article  CAS  Google Scholar 

  • Keiding S, Sorensen M, Bender D, Munk O, Ott P, Vilstrup H (2006) Brain metabolism of 13N ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology 43:42–50

    Article  PubMed  CAS  Google Scholar 

  • Kromhout J, McClain CJ, Zieve L, Doizaki WM, Gilberstadt S (1980) Blood mercaptan and ammonia concentrations in cirrhotics after a protein load. Am J Gastroenterol 74:507–511

    PubMed  CAS  Google Scholar 

  • Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE et al (1979) The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest 63:449–460

    Article  PubMed  CAS  Google Scholar 

  • Lockwood AH, Yap EW, Wong WH (1991) Cerebral ammoniametabolism in patients with severe liver disease and minimal encephalopathy. J Cereb Blood Flow Metab 11:337–341

    Article  PubMed  CAS  Google Scholar 

  • Mardini H, Smith FE, Record CO, Blamire A (2011) Magnetic resonance quantification of water and metabolites in the brain of cirrhotics following induced hyperammonaemia. J Hepatol 54:1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Masini A, Efrati C, Merli M, Attili A, Amodio P, Riggio O (1999) Effect of lactitol on blood ammonia in response to oral glutamine challenge in cirrhotic patients: evidence for an effect of non-absorbable disaccharides on small intestinal ammonia generation. Am J Gastroenterol 94:3323–3327

    Article  PubMed  CAS  Google Scholar 

  • Mullen KD (2003) Pathogenesis of hepatic encephalopathy. In: Jones EA, Meijer AJ, Chamuleau R (eds) Encephalopathy and nitrogen metabolism in liver failure. Kluwer, Dordrecht, pp 177–183

    Chapter  Google Scholar 

  • Nicolao F, Efrati C, Masini A, Merli M, Attili AF, Riggio O (2003) Role of determination of partial pressure of ammonia in cirrhotic patients with and without hepatic encephalopathy. J Hepatol 38:441–446

    Article  PubMed  CAS  Google Scholar 

  • Olde Damink SW, Dejong CH, Deutz NE, Soeters PB (1997) Decreased plasma and tissue isoleucine levels after simulated gastrointestinal bleeding by blood gavages in chronic portacaval shunted rats. Gut 40:418–424

    PubMed  CAS  Google Scholar 

  • Olde Damink SWM, Jalan R, Redhead DN, Hayes PC, Deutz NEP, Soeters PB (2002) Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Olde Damink SWM, Jalan R, Deutz NEP, Redhead DN, Dejong CHC, Hynds P et al (2003) The kidney places a major role in the hyperammonaemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 37:1277–1285

    Article  PubMed  Google Scholar 

  • Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F et al (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114:188–193

    Article  PubMed  CAS  Google Scholar 

  • Oppong KNW, Bartlett K, Record CO, Al Mardini H (1995) Synaptosomal glutamate transport in thioacetamide-induced hepatic encephalopathy in the rat. Hepatology 22:553–558

    PubMed  CAS  Google Scholar 

  • Oppong KN, Al-Mardini H, Thick M, Record CO (1997) Oral glutamine challenge in cirrhotics pre- and post-liver transplantation: a psychometric and analysed EEG study. Hepatology 26:870–876

    Article  PubMed  CAS  Google Scholar 

  • Plauth M, Roske AE, Romaniuk P, Roth E, Ziebig R, Lochs H (2000) Post-feeding hyperammonaemia in patients with transjugular portosystemic shunt and liver cirrhosis: role of small intestinal ammonia release and route of nutrient administration. Gut 46:849–855

    Article  PubMed  CAS  Google Scholar 

  • Rao VL, Audet RM, Butterworth RF (1995) Selective alterations of extracellular brain amino acids in relation to function in experimental portal-systemic encephalopathy: results of an in vivo microdialysis study. J Neurochem 65:1221–1228

    PubMed  CAS  Google Scholar 

  • Rees CJ, Oppong K, Al-Mardini H, Hudson M, Rose J, Record CO (2000) The effect of l-ornithine l-aspartate on patients with and without TIPS undergoing glutamine challenge: a double blind placebo controlled trial. Gut 47:571–574

    Article  PubMed  CAS  Google Scholar 

  • Riggio O, Efrati C, Masini A, Angeloni S, Merli M (2003) Is hyperammonemia really the true cause of altered neurospsychology, brain MMR spectroscopy and magnetisation transfer after an oral amino acid load in cirrhosis? Hepatology 38:777

    Article  PubMed  Google Scholar 

  • Riodan SM, Williams R (1997) Treatment of hepatic encephalopathy. N Eng J Med 337:473–479

    Article  Google Scholar 

  • Romero-Gómez M, Grande L, Camacho I, Benitez S, Irles J, Castro M (2002) Altered response to oral glutamine challenge as prognostic factor for overt episodes in patients with minimal hepatic encephalopathy. J Hepatol 37:781–787

    Article  PubMed  Google Scholar 

  • Romero-Gomez M, Ramos-Guerrero R, Grande L, de Teran LC, Corpas R, Camacho I, Bautista JD (2004) Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J Hepatol 41:49–54

    Article  PubMed  CAS  Google Scholar 

  • Rudman D, Galambos J, Smith R, Salam A, Warren W (1973) Comparison of the effect of various amino acids upon the blood ammonia concentration of patients with liver disease. Am J Clin Nutr 26:916–925

    PubMed  CAS  Google Scholar 

  • Walser M, Bodenlos LJ (1959) Urea metabolism in man. J Clin Invest 38:1617–1626

    Google Scholar 

  • Weissenborn K, Ahl B, Fischer-Wasels D, van den Hoff J, Hecker H, Burchert W et al (2007) Correlations between magnetic resonance spectroscopy alterations and cerebral ammonia and glucose metabolism in cirrhotic patients with and without hepatic encephalopathy. Gut 56:1736–1742

    Article  PubMed  Google Scholar 

  • Wolpert E, Phillips S, Summerskill WHJ (1970) Ammonia production in the human colon. New Eng J Med 283:159–164

    Article  PubMed  CAS  Google Scholar 

  • Wolpert E, Phillips S, Summerskill WHJ (1971) Transport of urea and ammonia production in the human colon. Lancet ii:1387–1390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Record.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardini, H., Record, C. Pathogenesis of hepatic encephalopathy: lessons from nitrogen challenges in man. Metab Brain Dis 28, 201–207 (2013). https://doi.org/10.1007/s11011-012-9362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9362-2

Keywords

Navigation