Skip to main content

Advertisement

Log in

Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Skeletal muscle contains various myofiber types closely associated with satellite stem cells, vasculature, and neurons, thus making it difficult to perform genetic or proteomic expression analysis with sufficient cellular specificity to resolve differences at the individual cell or myofiber type level. Here, we describe the combination of a simple histochemical method capable of simultaneously identifying Type I, IIA, IIB, and IIC myofibers followed by laser capture micro-dissection (LCM) to compare the expression profiles of individual fiber types, myonuclear domains, and satellite cells in frozen muscle sections of control and atrophied muscle. Quantitative RT-PCR (qPCR) was used to verify the integrity of the cell-specific RNAs harvested after histologic staining, while qPCR for specific genes of interest was used to quantify atrophy-associated changes in mRNA. Our data demonstrate that the differential myofiber atrophy previously described by histologic means is related to differential expression of atrophy-related genes, such as MuRF1 and MAFbx (a.k.a. Atrogin-1), within different myofiber type populations. This spatially resolved molecular pathology (SRMP) technique allowed quantitation of atrophy-related gene products within individual fiber types that could not be resolved by expression analysis of the whole muscle. The present study demonstrates the importance of fiber type specific expression profiling in understanding skeletal muscle biology especially during muscle atrophy and provides a practical method of performing such research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang P, Chen X, Fan M (2007) Signaling mechanisms involved in disuse muscle atrophy. Med Hypotheses 69(2):310–321. doi:10.1016/j.mehy.2006.11.043

    Article  PubMed  Google Scholar 

  2. Maggs AM, Huxley C, Hughes SM (2008) Nerve-dependent changes in skeletal muscle myosin heavy chain after experimental denervation and cross-reinnervation and in a demyelinating mouse model of Charcot-Marie-Tooth disease type 1A. Muscle Nerve 38(6):1572–1584. doi:10.1002/mus.21106

    Article  PubMed  Google Scholar 

  3. Sishi B, Loos B, Ellis B, Smith W, du Toit EF, Engelbrecht AM (2010) Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol 96(2):179–193. doi:10.1113/expphysiol.2010.054189

    Article  PubMed  Google Scholar 

  4. Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3(2):90–101

    Article  PubMed  CAS  Google Scholar 

  5. Glass DJ (2010) Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 13(3):225–229

    Article  PubMed  CAS  Google Scholar 

  6. Gehlert S, Weber S, Weidmann B, Gutsche K, Platen P, Graf C, Kappes-Horn K, Bloch W (2011) Cycling exercise-induced myofiber transitions in skeletal muscle depend on basal fiber type distribution. Eur J Appl Physiol. doi:10.1007/s00421-011-2209-4

  7. Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM (2007) Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol 102(6):2232–2239. doi:10.1152/japplphysiol.00024.2007

    Article  PubMed  CAS  Google Scholar 

  8. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37. doi:10.1146/annurev.biochem.75.103004.142622

    Article  PubMed  CAS  Google Scholar 

  9. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER (2010) Regulation of muscle mass by follistatin and activins. Mol Endocrinol 24(10):1998–2008. doi:10.1210/me.2010-0127

    Article  PubMed  CAS  Google Scholar 

  10. Kyparos A, Feeback DL, Layne CS, Martinez DA, Clarke MS (2005) Mechanical stimulation of the plantar foot surface attenuates soleus muscle atrophy induced by hindlimb unloading in rats. J Appl Physiol 99(2):739–746. doi:10.1152/japplphysiol.00771.2004

    Article  PubMed  Google Scholar 

  11. Favier FB, Benoit H, Freyssenet D (2008) Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch 456(3):587–600. doi:10.1007/s00424-007-0423-z

    Article  PubMed  CAS  Google Scholar 

  12. Bamman MM, Clarke MS, Feeback DL, Talmadge RJ, Stevens BR, Lieberman SA, Greenisen MC (1998) Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol 84(1):157–163

    PubMed  CAS  Google Scholar 

  13. Thompson JL, Balog EM, Fitts RH, Riley DA (1999) Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle—a test model. Anat Rec 254(1):39–52

    Article  PubMed  CAS  Google Scholar 

  14. Russ DW, Grandy JS, Toma K, Ward CW (2010) Ageing, but not yet senescent, rats exhibit reduced muscle quality and sarcoplasmic reticulum function. Acta Physiol (Oxf) 201(3):391–403. doi:10.1111/j.1748-1716.2010.02191.x

    Article  Google Scholar 

  15. Enns DL, Belcastro AN (2006) Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting. Can J Physiol Pharmacol 84(6):601–609. doi:10.1139/y06-013

    Article  PubMed  CAS  Google Scholar 

  16. Schulte LM, Navarro J, Kandarian SC (1993) Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am J Physiol 264(5 Pt 1):C1308–C1315

    PubMed  CAS  Google Scholar 

  17. Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5(2):87–90. doi:10.1038/ncb0203-87

    Article  PubMed  CAS  Google Scholar 

  18. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001

    Article  PubMed  CAS  Google Scholar 

  19. Espina V, Heiby M, Pierobon M, Liotta LA (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7(5):647–657. doi:10.1586/14737159.7.5.647

    Article  PubMed  CAS  Google Scholar 

  20. Adachi T, Kikuchi N, Yasuda K, Anahara R, Gu N, Matsunaga T, Yamamura T, Mori C, Tsujimoto G, Tsuda K, Ishihara A (2007) Fibre type distribution and gene expression levels of both succinate dehydrogenase and peroxisome proliferator-activated receptor-gamma coactivator-1alpha of fibres in the soleus muscle of Zucker diabetic fatty rats. Exp Physiol 92(2):449–455. doi:10.1113/expphysiol.2006.035451

    Article  PubMed  CAS  Google Scholar 

  21. Cao Z, Wanagat J, McKiernan SH, Aiken JM (2001) Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res 29(21):4502–4508

    Article  PubMed  CAS  Google Scholar 

  22. Marotta M, Sarria Y, Ruiz-Roig C, Munell F, Roig-Quilis M (2007) Laser microdissection-based expression analysis of key genes involved in muscle regeneration in mdx mice. Neuromuscul Disord 17(9–10):707–718. doi:10.1016/j.nmd.2007.05.007

    Article  PubMed  Google Scholar 

  23. Greenberg SA, Salajegheh M, Judge DP, Feldman MW, Kuncl RW, Waldon Z, Steen H, Wagner KR (2012) Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics. Ann Neurol 71(1):141–145. doi:10.1002/ana.22649

    Article  PubMed  Google Scholar 

  24. Ogilvie RW, Feeback DL (1990) A metachromatic dye-ATPase method for the simultaneous identification of skeletal muscle fiber types I, IIA, IIB and IIC. Stain Technol 65(5):231–241

    PubMed  CAS  Google Scholar 

  25. Gollnick PD, Hodgson DR (1986) The identification of fiber types in skeletal muscle: a continual dilemma. Exerc Sport Sci Rev 14:81–104

    Article  PubMed  CAS  Google Scholar 

  26. Clarke MS (2011) Proteomic analysis of skeletal muscle tissue using SELDI-TOF MS: application to disuse atrophy. Methods Mol Biol 818:131–141. doi:10.1007/978-1-61779-418-6_10

    Article  Google Scholar 

  27. Schulte L, Peters D, Taylor J, Navarro J, Kandarian S (1994) Sarcoplasmic reticulum Ca2 + pump expression in denervated skeletal muscle. Am J Physiol 267(2 Pt 1):C617–C622

    PubMed  CAS  Google Scholar 

  28. Kandarian SC, Peters DG, Taylor JA, Williams JH (1994) Skeletal muscle overload upregulates the sarcoplasmic reticulum slow calcium pump gene. Am J Physiol 266(5 Pt 1):C1190–C1197

    PubMed  CAS  Google Scholar 

  29. Kahvejian A, Quackenbush J, Thompson JF (2008) What would you do if you could sequence everything? Nat Biotechnol 26(10):1125–1133. doi:10.1038/nbt1494

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Neither author has any competing financial interests in the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. F. Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderburg, C.R., Clarke, M.S.F. Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression. Mol Cell Biochem 375, 159–170 (2013). https://doi.org/10.1007/s11010-012-1538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1538-x

Keywords

Navigation