Skip to main content

Advertisement

Log in

Oxidant-mediated modification of the cellular thiols is sufficient for arginase activation in cultured cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Increased arginase activity in the vasculature has been implicated in the regulation of nitric oxide (NO) homeostasis, leading to the development of vascular disease and the promotion of tumor cell growth. Recently, we showed that cysteine, in the presence of iron, promotes arginase activity by driving the Fenton reaction. In the present report, we showed that induction of oxidative stress in erythroleukemic cells with the thiol-specific oxidant, diamide, led to an increase in arginase activity by 42% (P = 0.02; vs. control). By using specific antibodies, it was demonstrated that this increase correlated with an increase in arginase-1 levels in the cells and with corresponding decreases in glutathione and protein thiol levels. Treatment of cells with aurothiomalate (ATM), a protein thiol-complexing agent, diminished the activity of arginase and arginase-1 levels by 19.5 and 35.2%, respectively (vs. control) and significantly decreased both glutathione and protein thiol levels, further implicating the thiol redox system in the cellular activation of arginase. Furthermore, diamide significantly altered the kinetics of arginase, resulting in the doubling of its V max (vs. control). Our presented data demonstrate, for the first time that the intracellular arginase activation is may be enhanced in part, via a cellular thiol-mediated mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morris SM Jr (1999) Arginine synthesis, metabolism, and transport: regulators of nitric oxide synthesis. In: Laskin JD, Laski DL (eds) Cellular and molecular biology of nitric oxide. Dekker, New York, pp 57–85

    Google Scholar 

  2. Wu G, Flynn NE, Knabe DA, Jaeger LA (2000) A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol Regul Integr Comp Physiol 279:554–559

    Google Scholar 

  3. Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, Muntel EE, Witte DP, Pegg AA, Foster PS, Hamid Q, Rothenberg ME (2003) Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 111:1863–1874

    PubMed  CAS  Google Scholar 

  4. Kepka-Lenhart D, Mistry SK, Wu G, Morris SM Jr (2000) Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages? Am J Physiol Regul Integr Comp Physiol 279:2237–2242

    Google Scholar 

  5. Wood KC, Hsu LL, Gladwin MT (2008) Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med 44:1506–1528

    Article  PubMed  CAS  Google Scholar 

  6. Auvinen M (1997) Cell transformation, invasion, and angiogenesis: a regulatory role for ornithine decarboxylase and polyamines? J Natl Cancer Inst 89:533–537

    Article  PubMed  CAS  Google Scholar 

  7. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  PubMed  CAS  Google Scholar 

  8. Yerushalmi HF, Besselsen DG, Ignatenko NA, Blohm-Mangone KA, Padilla-Torres JL, Stringer DE, Holubec H, Payne CM, Gerner EW (2006) Role of polyamines in arginine-dependent colon carcinogenesis in Apc(Min) (/+) mice. Mol Carcinog 45:764–773

    Article  PubMed  CAS  Google Scholar 

  9. Perembska Z, Zabek J, Graboń W, Rahden-Strarŏn I, Baraończyk-Kuzma (2001) Increase arginase in colon cancer. Clin Chim Acta 305:157–165

    Article  Google Scholar 

  10. Jänne J, Pösö H, Raina A (1978) Polyamines in rapid growth and cancer. Biochim Biophys Acta 473:241–293

    PubMed  Google Scholar 

  11. Pacifi RE, Davies KJA (1990) Protein degradation as an index of oxidative stress. Methods Enzymol 186:485–502

    Article  Google Scholar 

  12. Stadtman ER (1995) Role of oxidized amino acids in protein breakdown and stability. Methods Enzymol 258:379–393

    Article  PubMed  CAS  Google Scholar 

  13. Staal FJT, Roederer M, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87:9943–9947

    Article  PubMed  CAS  Google Scholar 

  14. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    PubMed  CAS  Google Scholar 

  15. Toledano MB, Leonard WJ (1991) Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA 88:4328–4332

    Article  PubMed  CAS  Google Scholar 

  16. Abate C, Patel L, Rausche FJ III, Curran T (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:1157–1161

    Article  PubMed  CAS  Google Scholar 

  17. Iyamu EW, Perdew H, Woods GM (2008) Cysteine-iron promotes arginase activity by driving the Fenton reaction. Biochem Biophy Res Commun 376:116–120

    Article  CAS  Google Scholar 

  18. Rouzer CA, Scott WA, Griffith OW, Hamill AL, Cohn ZA (1981) Depletion of glutathione selectively inhibits synthesis of leukotriene C by macrophages. Proc Natl Acad Sci USA 78:2532–2536

    Article  PubMed  CAS  Google Scholar 

  19. Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    PubMed  CAS  Google Scholar 

  20. Iyamu EW, Asakura T, Woods GM (2008) A colorimetric microplate assay method for high throughput analysis of arginase activity in vitro. Anal Biochem 383:332–334

    Article  PubMed  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  23. Storrie B, Madden EA (1990) Isolation of subcellular organelles. Methods Enzymol 182:220–221

    Google Scholar 

  24. Das DK, Maulik N (1994) Antioxidant effectiveness in ischemia-reperfusion tissue injury. Methods Enzymol 233:601–610

    Article  PubMed  CAS  Google Scholar 

  25. Meister A (1995) Glutathione biosynthesis and its inhibition. Methods Enzymol 252:26–30

    Article  PubMed  CAS  Google Scholar 

  26. Kosower NS, Kosower EM (1995) Diamide: an oxidant probe for thiols. Methods Enzymol 251:123–133

    Article  PubMed  CAS  Google Scholar 

  27. Pia Rigobello M, Messori L, Marcon G, Cinellu AM, Bragadin M, Folda A, Scutari G, Bindoli a (2004) Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J Inorg Biochem 98:1634–1641

    Article  PubMed  Google Scholar 

  28. Smith AD, Guidry CA, Morris VC, Levander OA (1999) Aurothioglucose inhibits murine thioredoxin reductase activity in vivo. J Nutr 129:194–198

    PubMed  CAS  Google Scholar 

  29. Danpure CJ (1976) The interaction of aurothiomalate and cysteine. Biochem Pharmacol 25:2343–2346

    Article  PubMed  CAS  Google Scholar 

  30. Wang Q, Janzen N, Ramachandran C, Jirik F (1997) Mechanism of inhibition of protein-tyrosine phosphatases by disodium aurothiomalate. Biochem Pharmacol 54:703–711

    Article  PubMed  CAS  Google Scholar 

  31. Akamatsu Y, Ohno T, Hirota K, Kagoshima H, Yodoi J, Shigesada K (1997) Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J Biol Chem 272:14497–14500

    Article  PubMed  CAS  Google Scholar 

  32. Shrimpton CN, Glucksman MJ, Lew RA, Tullai JW, Margulies EH, Roberts JL, Smith AI (1997) Thiolactivation of endopeptidase EC 3.4.24.15. J Biol Chem 272:17395–17399

    Article  PubMed  CAS  Google Scholar 

  33. Liu H, Lightfoot R, Stevens JL (1996) Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 271:4805–4812

    Article  PubMed  CAS  Google Scholar 

  34. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, Colombo MP, Zanovello P (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor bearing mice. J Immunol 170:270–278

    PubMed  CAS  Google Scholar 

  35. Rodrigues-Lima F, Fensome AC, Josephs M, Evans J, Veldan RJ, Katan M (2000) Structural requirements for catalysis and membrane targeting of mammalian enzymes with neutral sphingomyelinase and lysophospholipid phospholipase C activities. Analysis by chemical modification and site-directed mutagenesis. J Biol Chem 275:28316–28325

    PubMed  CAS  Google Scholar 

  36. Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A (1998) Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J. 12:561–569

    PubMed  CAS  Google Scholar 

  37. Jacob C, Holme AL, Fry FH (2004) The sulfinic switch in proteins. Org Biomol Chem 2:1953–1956

    Article  PubMed  CAS  Google Scholar 

  38. Usatyuk PV, Vepa S, Watkins T, He D, Parinandi NL, Natarajan V (2003) Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. Antioxid Redox Signal 5:723–730

    Article  PubMed  CAS  Google Scholar 

  39. Park HS, Huh SH, Kim MS, Kim DY, Gwag BJ, Cho SG, Choi EJ (2006) Neuronal nitric oxide synthase (nNOS) modulates the JNK1 activity through redox mechanism: a cGMP independent pathway. Biochem Biophys Res Commun 346:408–414

    Article  PubMed  CAS  Google Scholar 

  40. Kho CW, Lee PY, Bae KH, Cho S, Lee ZW, Park BC, Kang S, Lee do H, Park SG (2006) Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem Biophys Res Commun 348:25–35

    Article  PubMed  CAS  Google Scholar 

  41. Wan XS, St Clair DK (1993) Thiol-modulating agents increase manganese superoxide dismutase activity in human lung fibroblasts. Arch Biochem Biophys 304:89–93

    Article  PubMed  CAS  Google Scholar 

  42. Parinandi NL, Scribner WM, Vepa S, Shi S, Natarajan V (1999) Phospholipase D activation in endothelial cells is redox sensitive. Antioxid Redox Signal 1:193–210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Tarak Srivastava for the illuminating discussions. This study was supported in part by Grant KO1 HL076695-01 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efemwonkiekie W. Iyamu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyamu, E.W., Perdew, H.A. & Woods, G.M. Oxidant-mediated modification of the cellular thiols is sufficient for arginase activation in cultured cells. Mol Cell Biochem 360, 159–168 (2012). https://doi.org/10.1007/s11010-011-1053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1053-5

Keywords

Navigation