Skip to main content
Log in

High glucose condition upregulated Txnip expression level in rat mesangial cells through ROS/MEK/MAPK pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thioredoxin interacting protein (Txnip) is one of the most abundantly up-regulated genes in response to hyperglycemia. The increased renal expression of Txnip was associated with type IV collagen accumulation in streptozotocin-induced diabetic mice. As the mechanism of action of high glucose is unknown, we undertook the investigation of the signaling pathway on the upregulation of Txnip expression induced by high glucose in rat mesangial cells. Rat mesangial cells were exposed to normal (5.5 mM) or high (25 mM) glucose at different time points. Txnip expression was determined using real-time RT-PCR and western-blotting at transcription and translation level, respectively. Intracellular reactive oxygen species (ROS) was detected by FACS Calibur flow cytometer using fluorescent probe (DCFH-DA).The treatment with high glucose resulted in an increase of Txnip mRNA from 4 h to 12 h and Txnip protein from 12 to 24 h in comparison with normal glucose condition. In addition, N-acetyl-cysteine (NAC) was found to decrease Txnip protein expression under high glucose condition. Furthermore, p38MAPK inhibitor SB203580 suppressed Txnip expression at transcription and protein level significantly to high glucose exposure. These results suggest that high glucose exposure improves Txnip mRNA and protein expression level by ROS/MEK/MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giunti S, Barit D, Cooper ME (2006) Diabetic nephropathy: from mechanisms to rational therapies. Minerva Med 97(3):241–262

    CAS  PubMed  Google Scholar 

  2. Matsuyama K, Ogata N, Matsuoka M, Shima C, Wada M, Jo N, Matsumura M (2008) Relationship between pigment epithelium-derived factor (PEDF) and renal function in patients with diabetic retinopathy. Mol Vision 14:992–996

    CAS  Google Scholar 

  3. Suzaki Y, Yoshizumi M, Kagami S, Nishiyama A, Ozawa Y, Kyaw M, Izawa Y, Kanematsu Y, Tsuchiya K, Tamaki T (2004) BMK1 is activated in glomeruli of diabetic rats and in mesangial cells by high glucose conditions. Kidney Int 65(5):1749–1760. doi:10.1111/j.1523-1755.2004.00576.x

    Article  CAS  PubMed  Google Scholar 

  4. Isono M, Cruz MC, Chen S, Hong SW, Ziyadeh FN (2000) Extracellular signal-regulated kinase mediates stimulation of TGF-beta1 and matrix by high glucose in mesangial cells. J Am Soc Nephrol 11(12):2222–2230

    CAS  PubMed  Google Scholar 

  5. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5):599–622. doi:10.1210/er.2001-0039

    Article  CAS  PubMed  Google Scholar 

  6. Kang SW, Adler SG, Lapage J, Natarajan R (2001) p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int 60(2):543–552. doi:10.1046/j.1523-1755.2001.060002543.x

    Article  CAS  PubMed  Google Scholar 

  7. Wilmer WA, Dixon CL, Hebert C (2001) Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway. Kidney Int 60(3):858–871. doi:10.1046/j.1523-1755.2001.060003858.x

    Article  CAS  PubMed  Google Scholar 

  8. Chen KS, DeLuca HF (1994) Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1219(1):26–32. doi:10.1016/0167-4781(94)90242-9

    CAS  PubMed  Google Scholar 

  9. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD, Kim DK, Lee KW, Han PL, Rhee SG, Choi I (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. The Journal of Immunology 164(12):6287–6295

    CAS  PubMed  Google Scholar 

  10. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J (1999) Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274(31):21645–21650

    Article  CAS  PubMed  Google Scholar 

  11. Yamanaka H, Maehira F, Oshiro M, Asato T, Yanagawa Y, Takei H, Nakashima Y (2000) A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochem Biophys Res Commun 271(3):796–800. doi:10.1006/bbrc.2000.2699

    Article  CAS  PubMed  Google Scholar 

  12. Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y, Nishio K, Ishii Y, Yodoi J (2004) Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem 279(36):37559–37565. doi:10.1074/jbc.M405473200

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi T, Uehara S, Ikeda T, Itadani H, Kotani H (2003) Vitamin D3 up-regulated protein-1 regulates collagen expression in mesangial cells. Kidney Int 64(5):1632–1642. doi:10.1046/j.1523-1755.2003.00263.x

    Article  CAS  PubMed  Google Scholar 

  14. Hamada Y, Fukagawa M (2007) A possible role of thioredoxin interacting protein in the pathogenesis of streptozotocin-induced diabetic nephropathy. Kobe J Med Sci 53(1–2):53–61

    CAS  PubMed  Google Scholar 

  15. Qi W, Chen X, Gilbert RE, Zhang Y, Waltham M, Schache M, Kelly DJ, Pollock CA (2007) High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. Am J Pathol 171(3):744–754. doi:10.2353/ajpath.2007.060813

    Article  CAS  PubMed  Google Scholar 

  16. Turturro F, Friday E, Welbourne T (2007) Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231. BMC Cancer 7:96. doi:10.1186/1471-2407-7-96

    Article  PubMed  Google Scholar 

  17. Minn AH, Couto FM, Shalev A (2006) Metabolism-independent sugar effects on gene transcription: the role of 3-O-methylglucose. Biochemistry 45(37):11047–11051. doi:10.1021/bi0603625

    Article  CAS  PubMed  Google Scholar 

  18. Thorens B (1993) Facilitated glucose transporters in epithelial cells. Annu Rev Physiol 55:591–608. doi:10.1146/annurev.ph.55.030193.003111

    Article  CAS  PubMed  Google Scholar 

  19. Ha H, Lee HB (2003) Reactive oxygen species and matrix remodeling in diabetic kidney. J Am Soc Nephrol 14(8 Suppl 3):S246–S249. doi:10.1097/01.ASN.0000077411.98742.54

    Article  CAS  PubMed  Google Scholar 

  20. Ouedraogo R, Wu X, Xu SQ, Fuchsel L, Motoshima H, Mahadev K, Hough K, Scalia R, Goldstein BJ (2006) Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55(6):1840–1846. doi:10.2337/db05-1174

    Article  CAS  PubMed  Google Scholar 

  21. Xia L, Wang H, Goldberg HJ, Munk S, Fantus IG, Whiteside CI (2006) Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am J Physiol 290(2):F345–F356

    Article  CAS  Google Scholar 

  22. Huang JS, Chuang LY, Guh JY, Huang YJ, Hsu MS (2007) Antioxidants attenuate high glucose-induced hypertrophic growth in renal tubular epithelial cells. Am J Physiol 293(4):F1072–F1082. doi:10.1152/ajprenal.00020

    Google Scholar 

  23. Hung KY, Liu SY, Kao SH, Huang JW, Chiang CK, Tsai TJ (2008) N-acetylcysteine-Mediated antioxidation prevents hyperglycemia-induced apoptosis and collagen synthesis in rat mesangial cells. Am J Nephrol 29(3):192–202. doi:10.1159/000155657

    Article  PubMed  Google Scholar 

  24. Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W (2005) Effect of N-acetylcysteine on lipopolysaccharide-induced intra-uterine fetal death and intra-uterine growth retardation in mice. Toxicol Sci 88(2):525–533. doi:10.1093/toxsci/kfi300

    Article  CAS  PubMed  Google Scholar 

  25. Yoshioka J, Schulze PC, Cupesi M, Sylvan JD, MacGillivray C, Gannon J, Huang H, Lee RT (2004) Thioredoxin-interacting protein controls cardiac hypertrophy through regulation of thioredoxin activity. Circulation 109(21):2581–2586. doi:10.1161/01.CIR.0000129771.32215.44

    Article  CAS  PubMed  Google Scholar 

  26. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279(29):30369–30374. doi:10.1074/jbc.M400549200

    Article  CAS  PubMed  Google Scholar 

  27. Yu M, Geiger B, Deeb N, Rothschild MF (2007) Investigation of TXNIP (thioredoxin-interacting protein) and TRX (thioredoxin) genes for growth-related traits in pigs. Mamm Genome 18(3):197–209. doi:10.1007/s00335-007-9006-8

    Article  PubMed  Google Scholar 

  28. Van der Vleuten GM, Hijmans A, Kluijtmans LA, Blom HJ, Stalenhoef AF, de Graaf J (2004) Thioredoxin interacting protein in Dutch families with familial combined hyperlipidemia. Am J Med Genet A 130A(1):73–75. doi:10.1002/ajmg.a.30036

    Article  PubMed  Google Scholar 

  29. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y (2002) Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 277(46):44244–44251. doi:10.1074/jbc.M206233200

    Article  CAS  PubMed  Google Scholar 

  30. Pang ST, Hsieh WC, Chuang CK, Chao CH, Weng WH, Juang HH (2009) Thioredoxin-interacting protein: an oxidative stress-related gene is upregulated by glucose in human prostate carcinoma cells. J Mol Endocrinol 42(3):205–214. doi:10.1677/JME-08-0033

    Article  CAS  PubMed  Google Scholar 

  31. Shalev A, Pise-Masison CA, Radonovich M, Hoffmann SC, Hirshberg B, Brady JN, Harlan DM (2002) Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFbeta signaling pathway. Endocrinology 143(9):3695–3698. doi:10.1210/en.2002-220564

    Article  CAS  PubMed  Google Scholar 

  32. Minn AH, Hafele C, Shalev A (2005) Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146(5):2397–2405. doi:10.1210/en.2004-1378

    Article  CAS  PubMed  Google Scholar 

  33. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9(9):726–735

    CAS  PubMed  Google Scholar 

  34. Srinivasan S, Bolick DT, Hatley ME, Natarajan R, Reilly KB, Yeh M, Chrestensen C, Sturgill TW, Hedrick CC (2004) Glucose regulates interleukin-8 production in aortic endothelial cells through activation of the p38 mitogen-activated protein kinase pathway in diabetes. J Biol Chem 279(30):31930–31936. doi:10.1074/jbc.M400753200

    Article  CAS  PubMed  Google Scholar 

  35. Haneda M, Araki S, Togawa M, Sugimoto T, Isono M, Kikkawa R (1997) Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 46(5):847–853. doi:10.2337/diabetes.46.5.847

    Article  CAS  PubMed  Google Scholar 

  36. Kang MJ, Wu X, Ly H, Thai K, Scholey JW (1999) Effect of glucose on stress-activated protein kinase activity in mesangial cells and diabetic glomeruli. Kidney Int 55(6):2203–2214. doi:10.1046/j.1523-1755.1999.00488.x

    Article  CAS  PubMed  Google Scholar 

  37. Tsiani E, Lekas P, Fantus IG, Dlugosz J, Whiteside C (2002) High glucose-enhanced activation of mesangial cell p38 MAPK by ET-1, ANG II, and platelet-derived growth factor. Am J Physiol 282(1):E161–E169

    CAS  Google Scholar 

Download references

Acknowledgment

This work was sponsored by Education Bureau Fund of Heilongjiang Province (11541120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Zhou.

Additional information

Shaohong Fang and Yuhong Jin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, S., Jin, Y., Zheng, H. et al. High glucose condition upregulated Txnip expression level in rat mesangial cells through ROS/MEK/MAPK pathway. Mol Cell Biochem 347, 175–182 (2011). https://doi.org/10.1007/s11010-010-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0626-z

Keywords

Navigation