Skip to main content
Log in

Differential response of two models of genetically modified mice fed with high fat and cholesterol diets: relationship to the study of non-alcoholic steatohepatitis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Research on the molecular basis of the hepatic alterations associated to obesity is dependent on the availability of suitable animal models. Apolipoprotein E deficient mice (ApoE−/−) and LDL-receptor deficient mice (LDLr−/−) develop steatosis and steatohepatitis when given pro-atherogenic diets. However, previous data suggest that these two models are not completely interchangeable, and that their metabolic phenotype may partially differ in response to nutrient stimuli. The present study further investigates this question, by comparing changes in hepatic inflammation, lipoprotein metabolism, and their related gene expressions. LDLr−/− mice were more susceptible to the development of obesity and hepatic steatosis, while the ApoE−/− model increased the amount of macrophages and inflammatory nodules in the liver. These changes were accompanied by a differential expression of selected members of the MAPK family and PPARs in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28:629–636

    Article  CAS  PubMed  Google Scholar 

  2. Isomaa B (2003) A major health hazard: the metabolic syndrome. Life Sci 73:2395–2411

    Article  CAS  PubMed  Google Scholar 

  3. Musso G, Gambino R, Cassader M (2009) Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res 48:1–26

    Article  CAS  PubMed  Google Scholar 

  4. Petta S, Muratore C, Craxì A (2009) Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis 41:615–625

    Article  CAS  PubMed  Google Scholar 

  5. Varela-Rey M, Embade N, Ariz U, Lu SC, Mato JM, Martínez-Chantar ML (2009) Non-alcoholic steatohepatitis and animal models: understanding the human disease. Int J Biochem Cell Biol 41:969–976

    Article  CAS  PubMed  Google Scholar 

  6. Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1–28

    Google Scholar 

  7. Clark JM (2006) The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 40:S5–S10

    PubMed  Google Scholar 

  8. McCullough AJ (2006) Pathophysiology of noalcoholic steatohepatitis. J Clin Gastroenterol 40:S17–S29

    CAS  PubMed  Google Scholar 

  9. Brunt EM (2001) Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 21:3–16

    Article  CAS  PubMed  Google Scholar 

  10. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16

    Article  CAS  PubMed  Google Scholar 

  11. Larter CZ, Yeh MM (2008) Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol 23:1635–1648

    Article  PubMed  Google Scholar 

  12. Rull A, Escolà-Gil JC, Julve J, Rotllan N, Calpe-Berdiel L, Coll B, Aragonès G, Marsillach J, Alonso-Villaverde C, Camps J, Blanco-Vaca F, Joven J (2007) Deficiency in monocyte chemoattractant protein-1 modifies lipid and glucose metabolism. Exp Mol Pathol 83:361–366

    Article  CAS  PubMed  Google Scholar 

  13. Rull A, Rodríguez F, Aragonès G, Marsillach J, Beltrán R, Alonso-Villaverde C, Camps J, Joven J (2009) Hepatic monocyte chemoattractant protein-1 is upregulated by dietary cholesterol and contributes to liver steatosis. Cytokine 48:273–279

    Article  CAS  PubMed  Google Scholar 

  14. Lohmannn C, Schäfer N, von Lukowicz T, Sokrates Stein MA, Borén J, Rütti S, Wahli W, Donath MY, Lüscher TF, Matter CM (2009) Atherosclerotic mice exhibit systemic inflammation in periadventitial and visceral adipose tissue, liver, and pancreatic islets. Atherosclerosis 207:360–367

    Article  Google Scholar 

  15. Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS (1994) The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci USA 91:4431–4435

    Article  CAS  PubMed  Google Scholar 

  16. Calleja L, París MA, Paul A, Vilella E, Joven J, Jiménez A, Beltrán G, Uceda M, Maeda N, Osada J (1999) Low-cholesterol and high-fat diets reduce atherosclerotic lesion development in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 19:2368–2375

    CAS  PubMed  Google Scholar 

  17. Joven J, Rull A, Ferré N, Escolà-Gil JC, Marsillach J, Coll B, Alonso-Villaverde C, Aragones G, Claria J, Camps J (2007) The results in rodent models of atherosclerosis are not interchangeable: the influence of diet and strain. Atherosclerosis 195:e85–e92

    Article  CAS  PubMed  Google Scholar 

  18. Tous M, Ferré N, Camps J, Riu F, Joven J (2005) Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets may be a model of non-alcoholic steatohepatitis. Mol Cell Biochem 268:53–58

    Article  CAS  PubMed  Google Scholar 

  19. Tous M, Ferré N, Rull A, Marsillach J, Coll B, Alonso-Villaverde C, Camps J, Joven J (2006) Dietary cholesterol and differential monocyte chemoattractant protein-1 gene expression in aorta and liver of apo E-deficient mice. Biochem Biophys Res Commun 340:1078–1084

    Article  CAS  PubMed  Google Scholar 

  20. Karagiannides I, Abdou R, Tzortzopoulou A, Voshol PJ, Kypreos KE (2008) Apolipoprotein E predisposes to obesity and related metabolic dysfunctions in mice. FEBS J 275:4796–4809

    Article  CAS  PubMed  Google Scholar 

  21. Nachtigal P, Pospisilova N, Jamborova G, Pospechova K, Solichova D, Andrys C, Zdansky P, Micuda S, Semecky V (2008) Atorvastatin has hypolipidemic and anti-inflammatory effects in apoE/LDL receptor-double-knockout mice. Life Sci 82:708–717

    Article  CAS  PubMed  Google Scholar 

  22. Hasty AH, Shimano H, Osuga J, Namatame I, Takahashi A, Yahagi N, Perrey S, Iizuka Y, Tamura Y, Amemiya-Kudo M, Yoshikawa T, Okazaki H, Ohashi K, Harada K, Matsuzaka T, Sone H, Gotoda T, Nagai R, Ishibashi S, Yamada N (2001) Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J Biol Chem 276:37402–37408

    Article  CAS  PubMed  Google Scholar 

  23. Alaynick WA (2008) Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 8:329–337

    Article  CAS  PubMed  Google Scholar 

  24. Okamura T, Shimizu H, Nagao T, Ueda R, Ishii S (2007) ATF-2 regulates fat metabolism in Drosophila. Mol Biol Cell 18:1519–1529

    Article  CAS  PubMed  Google Scholar 

  25. Gao B (2005) Cytokines, STATs and liver disease. Cell Mol Immunol 2:92–100

    CAS  PubMed  Google Scholar 

  26. Riu E, Ferre T, Mas A, Hidalgo A, Franckhauser S, Bosch F (2002) Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism. Biochem J 368:931–937

    Article  CAS  PubMed  Google Scholar 

  27. Stienstra R, Duval C, Müller M, Kersten S (2007) PPARs, obesity, and inflammation. PPAR Res 2007:95974

    PubMed  Google Scholar 

  28. Qin X, Xie X, Fan Y, Tian J, Guan Y, Wang X, Zhu Y, Wang N (2008) Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology 48:432–441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PI05/1606 and PI08/1381 from the Instituto de Salud Carlos III, Madrid, Spain. Anna Rull is the recipient of a fellowship from the Generalitat de Catalunya (FI-G 0503).

Conflict of interest statement

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Joven.

Additional information

F. Rodríguez-Sanabria and A. Rull contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Sanabria, F., Rull, A., Aragonès, G. et al. Differential response of two models of genetically modified mice fed with high fat and cholesterol diets: relationship to the study of non-alcoholic steatohepatitis. Mol Cell Biochem 343, 59–66 (2010). https://doi.org/10.1007/s11010-010-0498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0498-2

Keywords

Navigation