Skip to main content

Advertisement

Log in

Human angiogenin presents neuroprotective and migration effects in neuroblastoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human angiogenin (ANG) has been highlighted as an angiogenic factor which supports primary and metastatic tumor growth. Recent genetic studies have shown that ANG is presented as a susceptibility gene for amyotrophic lateral sclerosis (ALS) and ALS-frontotemporal dementia (ALS-FTD). They found several missense mutations, including K40I, which present the weakest functional activity in ANG variants. In this study, we investigate whether human wild type ANG (wANG) and its variant K40I (mANG) maintain their divergent functional capacities in neuronal cells. To evaluate this, SH-SY5Y neuroblastoma cells were transfected with wANG and mANG DNA and identified both wild and mutant ANG are localized to nuclei and have no effects on proliferation. We have shown that human wANG prevented cell death under H2O2-induced oxidative stress in both SH-SY5Y and NSC-34 cells, tested by MTT assay. These effects were more enhanced in motor neuron cell NSC-34. wANG also played a role in cell migration, while mANG decreased these functional activities. Immunoblot analysis revealed that the intracellular signaling of ERK1/2 (at Thr183/Tyr185) was increased following transfection of the wANG gene, and significantly decreased by mANG in neuronal cells. These findings suggest that human ANG plays a critical role in cell protection and migration following alterations in ERK1/2 signaling in SH-SY5Y cells. This may provide the possible relationship between mutations in hANG and other neurodegenerative diseases as well as ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ANG:

Angiogenin

ERK1/2:

Extracellular regulated kinase1/2

FBS:

Fetal bovine serum

GFP:

Green fluorescent protein

HUVEC:

Human umbilical vein endothelial cell

mANG:

Variant K40I ANG gene

SOD1:

Cu/Zn-superoxide dismutase gene

wANG:

Wild type ANG gene

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole

References

  1. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819

    Article  CAS  PubMed  Google Scholar 

  2. Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J, Morrison KE, Green A, Acharya KR, Brown RH Jr, Hardiman O (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413

    Article  CAS  PubMed  Google Scholar 

  3. Wu D, Yu W, Kishikawa H, Folkerth RD, Iafrate AJ, Shen Y, Xin W, Sims K, Hu GF (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62:609–617

    Article  CAS  PubMed  Google Scholar 

  4. Schymick JC, Talbot K, Traynor BJ (2007) Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet 16(R2):R233–R242

    Article  CAS  PubMed  Google Scholar 

  5. Crabtree B, Thiyagarajan N, Prior SH, Wilson P, Iyer S, Ferns T, Shapiro R, Brew K, Subramanian V, Acharya KR (2007) Characterization of human angiogenin variants implicated in amyotrophic lateral sclerosis. Biochemistry 46:11810–11818

    Article  CAS  PubMed  Google Scholar 

  6. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486

    Article  CAS  PubMed  Google Scholar 

  7. Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Amino acid sequence of human tumor derived angiogenin. Biochemistry 24:5486–5494

    Article  CAS  PubMed  Google Scholar 

  8. Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24:5494–5499

    Article  CAS  PubMed  Google Scholar 

  9. Maiti TK, Soumya D, Dasgupta S, Pathak T (2006) 3′-N-Alkylamino-3′-deoxy-ara-uridines: a new class of potential inhibitors of ribonuclease A and angiogenin. Bioorg Med Chem 14:1221–1228

    Article  CAS  PubMed  Google Scholar 

  10. Shapiro R, Vallee BL (1989) Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 28:7401–7408

    Article  CAS  PubMed  Google Scholar 

  11. Shapiro R, Fox EA, Riordan JF (1989) Role of lysines in human angiogenin: chemical modification and site-directed mutagenesis. Biochemistry 28:1726–1732

    Article  CAS  PubMed  Google Scholar 

  12. Xu Z, Monti DM, Hu G (2001) Angiogenin activates human umbilical artery smooth muscle cells. Biochem Biophys Res Commun 285:909–914

    Article  CAS  PubMed  Google Scholar 

  13. Hu GF (1998) Neomycin inhibits angiogenin-induced angiogenesis. Proc Natl Acad Sci USA 95:9791–9795

    Article  CAS  PubMed  Google Scholar 

  14. Moroianu J, Riordan JF (1994) Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci USA 91:1677–1681

    Article  CAS  PubMed  Google Scholar 

  15. Hu G, Riordan JF, Vallee BL (1994) Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc Natl Acad Sci USA 91:12096–12100

    Article  CAS  PubMed  Google Scholar 

  16. Koh SH, Roh H, Lee SM, Kim HJ, Kim M, Lee KW, Kim HT, Kim J, Kim SH (2005) Phosphatidylinositol 3-kinase activator reduces motor neuronal cell death induced by G93A or A4V mutant SOD1 gene. Toxicology 213:45–55

    Article  CAS  PubMed  Google Scholar 

  17. Liu S, Yu D, Xu ZP, Riordan JF, Hu GF (2001) Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 287:305–310

    Article  CAS  PubMed  Google Scholar 

  18. Kim HM, Kang DK, Kim HY, Kang SS, Chang SI (2007) Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem Biophys Res Commun 352:509–513

    Article  CAS  PubMed  Google Scholar 

  19. Kieran D, Sebastia J, Greenway MJ, King MA, Connaughton D, Concannon CG, Fenner B, Hardiman O, Prehn JH (2008) Control of motoneuron survival by angiogenin. J Neurosci 28:14056–14061

    Article  CAS  PubMed  Google Scholar 

  20. Subramanian V, Crabtree B, Acharya KR (2008) Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum Mol Genet 17:130–149

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian V, Feng Y (2007) A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet 16:1445–1453

    Article  CAS  PubMed  Google Scholar 

  22. Sebastia J, Kieran D, Breen B, King MA, Netteland DF, Joyce D, Fitzpatrick SF, Taylor CT, Prehn JH (2009) Angiogenin protects motoneurons against hypoxic injury. Cell Death Differ 16:1238–1247

    Article  CAS  PubMed  Google Scholar 

  23. Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT, Dahrouge S, Antel JP (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221

    CAS  PubMed  Google Scholar 

  24. Eggett CJ, Crosier S, Manning P, Cookson MR, Menzies FM, McNeil CJ, Shaw PJ (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74:1895–1902

    Article  CAS  PubMed  Google Scholar 

  25. Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem 108:1116–1125

    Article  CAS  PubMed  Google Scholar 

  26. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den Bosch L, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138

    Article  CAS  PubMed  Google Scholar 

  27. Lambrechts D, Lafuste P, Carmeliet P, Conway EM (2006) Another angiogenic gene linked to amyotrophic lateral sclerosis. Trends Mol Med 12:345–347

    Article  CAS  PubMed  Google Scholar 

  28. Eriksen JL, Mackenzie IR (2008) Progranulin: normal function and role in neurodegeneration. J Neurochem 104:287–297

    CAS  PubMed  Google Scholar 

  29. Schlachetzki JC, Schmidtke K, Beckervordersandforth J, Borozdin W, Wilhelm C, Hull M, Kohlhase J (2009) Frequency of progranulin mutations in a German cohort of 79 frontotemporal dementia patients. J Neurol 256:2043–2051

    Article  PubMed  Google Scholar 

  30. Nakamura M, Yamabe H, Osawa H, Nakamura N, Shimada M, Kumasaka R, Murakami R, Fujita T, Osanai T, Okumura K (2006) Hypoxic conditions stimulate the production of angiogenin and vascular endothelial growth factor by human renal proximal tubular epithelial cells in culture. Nephrol Dial Transplant 21:1489–1495

    Article  CAS  PubMed  Google Scholar 

  31. Rajashekhar G, Loganath A, Roy AC, Chong SS, Wong YC (2005) Hypoxia up-regulated angiogenin and down-regulated vascular cell adhesion molecule-1 expression and secretion in human placental trophoblasts. J Soc Gynecol Investig 12:310–319

    Article  CAS  PubMed  Google Scholar 

  32. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    CAS  PubMed  Google Scholar 

  33. Hartmann A, Kunz M, Kostlin S, Gillitzer R, Toksoy A, Brocker EB, Klein CE (1999) Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res 59:1578–1583

    CAS  PubMed  Google Scholar 

  34. Pilch H, Schlenger K, Steiner E, Brockerhoff P, Knapstein P, Vaupel P (2001) Hypoxia-stimulated expression of angiogenic growth factors in cervical cancer cells and cervical cancer-derived fibroblasts. Int J Gynecol Cancer 11:137–142

    Article  CAS  PubMed  Google Scholar 

  35. Campo L, Turley H, Han C, Pezzella F, Gatter KC, Harris AL, Fox SB (2005) Angiogenin is up-regulated in the nucleus and cytoplasm in human primary breast carcinoma and is associated with markers of hypoxia but not survival. J Pathol 205:585–591

    Article  CAS  PubMed  Google Scholar 

  36. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    Article  CAS  PubMed  Google Scholar 

  37. Lester RD, Jo M, Campana WM, Gonias SL (2005) Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/mitogen-activated protein kinase-dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. J Biol Chem 280:39273–39277

    Article  CAS  PubMed  Google Scholar 

  38. Pintucci G, Moscatelli D, Saponara F, Biernacki PR, Baumann FG, Bizekis C, Galloway AC, Basilico C, Mignatti P (2002) Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 16:598–600

    CAS  PubMed  Google Scholar 

  39. Gao X, Xu Z (2008) Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai) 40:619–624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the cluster research fund of Hanyang University (HY-2009-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, GW., Kang, B.Y. & Kim, S.H. Human angiogenin presents neuroprotective and migration effects in neuroblastoma cells. Mol Cell Biochem 340, 133–141 (2010). https://doi.org/10.1007/s11010-010-0410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0410-0

Keywords

Navigation