Skip to main content

Advertisement

Log in

Effect of adjuvants on immune response and protective immunity elicited by recombinant Hsp60 (GroEL) of Salmonella typhi against S. typhi infection

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Heat shock proteins (Hsps) have been reported to be dominant antigens for the host immune response to various pathogens and thus, have great potential for use in vaccination. In the present study, we evaluated the immunogenicity and protective efficacy of GroEL of Salmonella enterica serovar Typhi against lethal infection by S. typhi Ty2 in mice with or without adjuvants. Anti GroEL–IgG titers were significantly higher in mice immunized with either GroEL-alone or in combination with alum/Complete Freund’s adjuvant (CFA) as compared to the control. Analysis of antibody isotypes suggested predominance of Th2 type immune response in GroEL + alum immunized animals as revealed by higher IgG1/IgG2a ratio. Whereas, immunization of animals with GroEL + CFA or GroEL-alone shifted the immune response toward Th1 phenotype. Mice immunized with GroEL with or without adjuvants, showed a significant increase in lymphocyte proliferation and cytokine levels. The animals immunized with GroEL + CFA or GroEL-alone showed higher IFN-γ and IL-2 levels than alum group, indicating Th1 response whereas IL-4 levels (Th2 response) were found to be highest in alum group as compared to other two immunized groups. Immunization of mice with GroEL-alone, GroEL + alum, and GroEL + CFA provided 70, 50 and 80% protection, respectively, against lethal challenge by S. typhi in mice. The differences in the percentage protection among various groups were attributed to the differences in the immune responses generated by respective immunizations. The present study shows that GroEL forms an ideal candidate molecule to develop a recombinant protein based vaccine against human typhoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Everest P, Wain J, Roberts M, Rooh G, Dougan G (2001) The molecular mechanisms of severe typhoid fever. Trends Microbiol 9:316–320

    Article  CAS  PubMed  Google Scholar 

  2. Celum CL, Chaisson RE, Rutherford GW, Barnhart JL, Echenberg DF (1987) Incidence of Salmonellosis in patients with AIDS. J Infect Dis 156:998–1002

    CAS  PubMed  Google Scholar 

  3. Hornick RC, Woodward TE, McCrumb FR, Synder MJ, Dawkins AT, Bulkeley JJ (1967) Typhoid fever vaccine—yes or no? Med Clin North Am 51:617–623

    CAS  PubMed  Google Scholar 

  4. Ivanoff B, Levine MM, Lambert PH (1994) Vaccination against typhoid fever: present status. Bull World Health Organ 72:957–971

    CAS  PubMed  Google Scholar 

  5. Guzman CA, Borsutzky S, Griot-Wenk M, Metcalfe IC, Pearman J, Collioud A (2006) Vaccines against typhoid fever. Vaccine 24:3804–3811

    Article  CAS  PubMed  Google Scholar 

  6. Robbins JB, Schneerson R (1990) Polysaccharide protein conjugates: a new generation of vaccines. J Infect Dis 161:821–832

    CAS  PubMed  Google Scholar 

  7. Szu SC, Taylor DN, Trofa AC, Clements JD, Shiloach J, Sadoff JC (1994) Laboratory and preliminary clinical characterization of Vi-capsular polysaccharide–protein conjugate vaccines. Infect Immun 62:4440–4444

    CAS  PubMed  Google Scholar 

  8. Cadoz M (1998) Potential and limitations of polysaccharide vaccines in infancy. Vaccine 16:1391–1395

    Article  CAS  PubMed  Google Scholar 

  9. Hessel L, Debois H, Fletcher M, Dumas R (1999) Experience with Salmonella typhi Vi capsular polysaccharide vaccine. Eur J Clin Microbiol Infect Dis 18:609–620

    Article  CAS  PubMed  Google Scholar 

  10. Morimoto RI, Milarski KL (1990) Expression and function of vertebrate hsp70 genes. In: Motimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, pp 323–359

    Google Scholar 

  11. Young RA, Elliot TJ (1989) Stress proteins, infections, and immune surveillance. Cell 59:5–8

    Article  CAS  PubMed  Google Scholar 

  12. Kaufmann SHE (1990) Heat shock protein and the immune response. Immunol Today 11:129–136

    Article  CAS  PubMed  Google Scholar 

  13. Young RA (1990) Stress proteins and immunology. Ann Rev Immunol 8:401–420

    Article  CAS  Google Scholar 

  14. Ferrero RL, Thilberge JM, Kansau I, Wuscher N, Huerre M, Labigne A (1995) The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc Natl Acad Sci USA 92:6499–6503

    Article  CAS  PubMed  Google Scholar 

  15. Gomez FJ, Allendoerfer R, Deepe GS Jr (1995) Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Infect Immunol 63:2587–2595

    CAS  Google Scholar 

  16. Lowrie DB, Silva CL, Colston MJ, Ragno S, Tascon RE (1997) Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15:834–838

    Article  CAS  PubMed  Google Scholar 

  17. Suzue K, Zhou X, Eisen HN, Young RA (1997) Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class1 presentation pathway. Proc Natl Acad Sci USA 94:13146–13151

    Article  CAS  PubMed  Google Scholar 

  18. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  19. Sarada SKS, Paliwal P, Bansal A, Mishra C, Khan N, Mustoori SR, Ilavazhagan G, Sawhney RC, Banerjee PK (2006) Studies on immunogenicity and protective efficacy of Dna J of Salmonella typhi against lethal infection by Salmonella typhimurium in mice. Vaccine 24:7135–7141

    Article  Google Scholar 

  20. Paliwal PK, Bansal A, Sagi SSK, Sairam M, Govindaswamy I (2008) Cloning, expression and characterization of heat shock protein 60 (groEL) of Salmonella enterica serovar Typhi and its role in protective immunity against lethal Salmonella infection in mice. Clin Immunol 126:89–96

    Article  CAS  PubMed  Google Scholar 

  21. Khan MN, Bansal A, Shukla D, Paliwal P, Sarada SKS, Mustoori SR, Banerjee PK (2006) Immunogenicity and protective efficacy of Dna J (Hsp40) of Streptococcus pneumoniae against lethal infection in mice. Vaccine 24:6225–6231

    Article  CAS  PubMed  Google Scholar 

  22. Broderson JR (1989) A retrospective review of lesions associated with the use of Freund’s adjuvant. Lab Animal Sci 39:400–405

    CAS  Google Scholar 

  23. Bennett B, Check IJ, Olsen MR, Hunter RL (1992) A comparison of commercially available adjuvants for use in research. J Immunol Methods 153:31–40

    Article  CAS  PubMed  Google Scholar 

  24. Allison AC, Byars NE (1991) Immunological adjuvants: desirable properties and side effects. Mol Immunol 28:279–284

    Article  CAS  PubMed  Google Scholar 

  25. Kussi N, Murminen M, Saxen H, Valtonen M, Makela PH (1979) Immunization with major outer membrane proteins in experimental Salmonellosis of mice. Infect Immunol 25:857–862

    Google Scholar 

  26. Cribbs DH, Ghochikyan A, Vasilevko V, Tran M, Petrushina I, Sadzikava N, Babikyan D, Kesslak P, KieberEmmons T, Cotman CW, Agadjanyan MG (2003) Adjuvant dependent modulation of Th1 and Th2 responses to immunization with β-amyloid. Internat Immunol 15:505–514

    Article  CAS  Google Scholar 

  27. Harmala LA, Ingulli EG, Curtsinger JM, Lucido MM, Schmidt CS, Weigel BJ, Blazar BR, Mescher MF, Pennell CA (2002) The adjuvant effects of Mycobacterium tuberculosis heat shock protein 70 results from the rapid and prolonged activation of antigen specific CD8 + T cells in vivo. J Immunol 169:5622–5629

    CAS  PubMed  Google Scholar 

  28. Huang Q, Richmond JL, Suzue K, Eisen HN, Young RA (2000) Elicitation of CTLs by Mycobacterial hsp70 fusion proteins maps to a discreet domain and is CD4+ T cell independent. J Exp Med 191:403–408

    Article  CAS  PubMed  Google Scholar 

  29. Ruedl C, Kopf M, Bachmann MF (1999) CD8+ T cells mediate CD40-independent maturation of dendritic cells in vivo. J Exp Med 189:1875–1883

    Article  CAS  PubMed  Google Scholar 

  30. Singh M, Ganguly NK, Kumar L, Vohra H (1999) Protective efficacy and immunogenicity of Vi porin conjugate against Salmonella typhi. Microbiol Immunol 43:535–542

    CAS  PubMed  Google Scholar 

  31. Chibber S, Bhardwaj SB (2004) Protection in a mouse peritonitis model mediated by iron regulated outer membrane protein of Salmonella typhi coupled to its Vi antigen. J Med Microbiol 53:705–709

    Article  CAS  PubMed  Google Scholar 

  32. Secundino I, Lopez-Macias C, Barragan LC, Gil-Cruz C, Rios-Sarabia N, Palacios RP (2005) Salmonella porins induce a sustained, lifelong specific bactericidal antibody memory response. Immunology 117:59–70

    Article  Google Scholar 

  33. Sood S, Rishi P, Vohra H, Sharma S, Ganguly NK (2005) Cellular immune response induced by Salmonella enterica serotype Typhi iron-regulated outer-membrane proteins at peripheral and mucosal levels. J Med Microbiol 54:815–821

    Article  CAS  PubMed  Google Scholar 

  34. Isibasi A, Ortiz V, Vargas M, Paniagua G, Gonzalez C, Moreno J, Kumate J (1988) Protection against Salmonella typhi infection in mice after immunization with outer membrane proteins isolated from Salmonella typhi 9, 12, d, Vi. Infect Immunol 56:2953–2959

    CAS  Google Scholar 

  35. Shinnick TM (1991) Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol 167:145–160

    CAS  PubMed  Google Scholar 

  36. Young DB, Lathigra R, Hendrix R, Sweetser D, Young RA (1988) Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci USA 85:4260–4270

    Google Scholar 

  37. Tang SW, Abubakar S, Devi S, Puthucheary S, Pang T (1997) Induction and characterization of heat shock proteins of Salmonella typhi and their reactivity with sera from patients with typhoid fever. Infect Immunol 65:2983–2986

    CAS  Google Scholar 

  38. McLennan N, Masters M (1998) GroEL is vital for cell-wall synthesis. Nature 392:139

    Article  CAS  PubMed  Google Scholar 

  39. Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  CAS  PubMed  Google Scholar 

  40. Soltys BJ, Gupta RS (1997) Cell surface localization of the 60-kDa-heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320

    Article  CAS  PubMed  Google Scholar 

  41. Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–333

    Article  CAS  PubMed  Google Scholar 

  42. Finkelmen FD, Katona IM, Mosmann TR, Coffman RL (1988) Interferon γ regulates the isotypes of immunoglobulin secreted during in vivo humoral responses. J Immunol 140:1022–1027

    Google Scholar 

  43. Snapper CM, Finkelman FD, Paul WE (1988) Differential regulation of IgG1 and IgE synthesis by interleukin 4. J Exp Med 167:183–196

    Article  CAS  PubMed  Google Scholar 

  44. Levine MM, Tacket CO, Sztein MB (2001) Host–Salmonella interaction: human trials. Microbes Infect 3:1271

    Article  CAS  PubMed  Google Scholar 

  45. HogenEsch H (2002) Mechanism of stimulation of the immune response by alum adjuvants. Vaccine 20:S34–S39

    Article  CAS  PubMed  Google Scholar 

  46. Bretscher PA (1992) A hypothesis to explain why cell mediated immunity alone can contain infections by certain intracellular parasites and how immune class regulation of the response can be subverted. Immunol Cell Biol 70:343–351

    Article  PubMed  Google Scholar 

  47. Silva CL, Silva MF, Pietro RC, Lowrie DB (1994) Protection against tuberculosis by passive transfer with T-cell clones recognizing mycobacterial heat shock protein 65. Immunology 83:341–346

    CAS  PubMed  Google Scholar 

  48. Zugel U, Kaufmann SHE (1997) Activation of CD8 T cells with specificity for mycobacterial heat shock protein 60 in Mycobacterium bovis bacillus Calmette–Guerin–vaccinated mice. Infect Immunol 65:3947–3950

    CAS  Google Scholar 

  49. Zugel U, Kaufmann SHE (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12:19–39

    CAS  PubMed  Google Scholar 

  50. Suzue K, Young RA (1996) Adjuvant free Hsp 70 fusion protein system elicits humoral and cellular immune responses to HIV I p24. J Immunol 156:873–879

    CAS  PubMed  Google Scholar 

  51. Tobian AAR, Harding CV, Canaday DH (2005) Mycobacterium tuberculosis heat shock fusion protein enhances class I MHC cross processing and presentation by B lymphocytes. J Immunol 174:5209–5214

    CAS  PubMed  Google Scholar 

  52. Li H, Zhou M, Han J, Zhu X, Dong T, Gao GF, Tien P (2005) Generation of murine CTL by a hepatitis B virus specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J Immunol 174:195–204

    CAS  PubMed  Google Scholar 

  53. Udono H, Levey DL, Srivastava PK (1994) Cellular requirements for tumour specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA 91:3077–3081

    Article  CAS  PubMed  Google Scholar 

  54. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588

    Article  CAS  PubMed  Google Scholar 

  55. Enomoto Y, Bharti A, Khaleque A, Song B, Liu C, Apostolopoulos V (2006) Enhanced immunogenicity of Heat shock protein 70 peptide complexes from dendritic cell–tumor fusion cells. J Immunol 177:5946–5955

    CAS  PubMed  Google Scholar 

  56. Eden WV, Vander Zee R, Prakken B (2005) Heat shock protein induce T cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330

    Article  PubMed  Google Scholar 

  57. Quintana FJ, Carmi P, Mor F, Cohen IR (2003) DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: Identification of a regulatory HSP60 peptide. J Immunol 171:3533–3541

    CAS  PubMed  Google Scholar 

  58. Quintana FJ, Carmi P, Cohen IR (2002) DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes. J Immunol 169:6030–6035

    CAS  PubMed  Google Scholar 

  59. Osterloh A, Stiegen FM, Veit A, Fleischer B, Bonin AV, Breloer M (2004) Lipopolysaccharide free heat shock protein 60 activates T cells. J Biol Chem 279:47906–47911

    Article  CAS  PubMed  Google Scholar 

  60. Ramirez SR, Jasuja HS, Warger T, Braedel-Ruoff S, Hilf N, Wiemann K, Rammensee HG, Schild H (2005) Glycoprotein 96-activated dendritic cells induce a CD8-biased T cell response. Cell Stress Chaperones 10:221–229

    Article  CAS  PubMed  Google Scholar 

  61. Segal BH, Wang XY, Dennis CG, Youn R, Repasky EA, Manjili MH, Subjeck JR (2006) Heat shock protein as vaccine adjuvants in infections and cancer. Drug Discov Today 11:534–540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rameshwar Singh and Mr. Bhagwat Singh of Experimental Animal Facility for their valuable support and technical assistance with animal experiments. This study was supported by Defence Research and Development Organization (DRDO), Ministry of Defence, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Bansal.

Additional information

Anju Bansal and Piyush Kumar Paliwal have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, A., Paliwal, P.K., Sagi, S.S.K. et al. Effect of adjuvants on immune response and protective immunity elicited by recombinant Hsp60 (GroEL) of Salmonella typhi against S. typhi infection. Mol Cell Biochem 337, 213–221 (2010). https://doi.org/10.1007/s11010-009-0301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0301-4

Keywords

Navigation