Skip to main content
Log in

α-Lipoic acid and ascorbate prevent LDL oxidation and oxidant stress in endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Both α-lipoic acid (LA) and ascorbic acid (vitamin C) have been shown to improve endothelial dysfunction, a precursor of atherosclerosis. Since oxidant stress can cause endothelial dysfunction, we tested the interaction and efficacy of these antioxidants in preventing oxidant damage to lipids due to both intra- and extracellular oxidant stresses in EA.hy926 endothelial cells. LA spared intracellular ascorbate in culture and in response to an intracellular oxidant stress induced by the redox cycling agent menadione. Extracellular oxidant stress generated by incubating cells for 2 h in with 0.2 mg/ml LDL and 5 μM Cu2+ caused a time-dependent increase of the lipid peroxidation product malondialdehyde in both cells and LDL, preceded by rapid disappearance of` α-tocopherol in LDL. α-Lipoic acid at concentrations of 40–80 μM blunted these effects. Similarly, intracellular ascorbate concentrations of 1–2 mM also prevented Cu2+-induced lipid peroxidation in LDL and cells. Cu2+-dependent oxidation of LDL in the presence of ascorbate-loaded cells decreased intracellular ascorbate by 20%, but this decrease was not reversed by LA. Both LA and ascorbate protect endothelial cells and LDL from either intra- or extracellular oxidant stress, but that LA does not spare ascorbate in oxidatively stressed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443

    Article  PubMed  CAS  Google Scholar 

  2. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  3. Steinberg D, Parthasarathy S, Carew TE et al (1989) Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  PubMed  CAS  Google Scholar 

  4. Steinbrecher UP, Parthasarathy S, Leake DS et al (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887

    Article  PubMed  CAS  Google Scholar 

  5. Matsugo S, Konishi T, Matsuo D et al (1996) Reevaluation of superoxide scavenging activity of dihydrolipoic acid and its analogues by chemiluminescent method using 2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo-[1,2-a]pyrazine-3-one (MCLA) as a superoxide probe. Biochem Biophys Res Commun 227:216–220

    Article  PubMed  CAS  Google Scholar 

  6. Packer L, Witt EH, Tritschler HJ (1995) α-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250

    Article  PubMed  CAS  Google Scholar 

  7. Jocelyn PC (1967) The standard redox potential of cysteine-cystine from the thiol-disulfide exchange reaction with glutathione and lipoic acid. Eur J Biochem 2:327–331

    Article  PubMed  CAS  Google Scholar 

  8. Han D, Handelman G, Marcocci L et al (1997) Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6:321–338

    PubMed  CAS  Google Scholar 

  9. Roy S, Packer L (1998) Redox regulation of cell functions by α-lipoate: biochemical and molecular aspects. Biofactors 8:17–21

    PubMed  CAS  Google Scholar 

  10. Kagan VE, Serbinova EA, Forte T et al (1992) Recycling of vitamin E in human low density lipoproteins. J Lipid Res 33:385–397

    PubMed  CAS  Google Scholar 

  11. Niki E, Noguchi N, Tsuchihashi H et al (1995) Interaction among vitamin C, vitamin E, and β-carotene. Am J Clin Nutr 62(Suppl):1322S–1326S

    PubMed  CAS  Google Scholar 

  12. Martin A, Frei B (1997) Both intracellular and extracellular vitamin C inhibit atherogenic modification of LDL by human vascular endothelial cells. Arterioscler Thromb Vasc Biol 17:1583–1590

    PubMed  CAS  Google Scholar 

  13. Negre-Salvayre A, Mabile L, Delchambre J et al (1995) α-Tocopherol, ascorbic acid, and rutin inhibit synergistically the copper-promoted LDL oxidation and the cytotoxicity of oxidized LDL to cultured endothelial cells. Biol Trace Elem Res 47:81–91

    Article  PubMed  CAS  Google Scholar 

  14. Siow RC, Sato H, Leake DS et al (1999) Induction of antioxidant stress proteins in vascular endothelial and smooth muscle cells: protective action of vitamin C against atherogenic lipoproteins. Free Radic Res 31:309–318

    Article  PubMed  CAS  Google Scholar 

  15. Totzke G, Metzner C, Ulrich-Merzenich G et al (2001) Effect of vitamin E and vitamin C on the DNA synthesis of human umbilical arterial endothelial cells. Eur J Nutr 40:121–126

    Article  PubMed  CAS  Google Scholar 

  16. Packer L, Tritschler HJ (1996) Alpha-lipoic acid: the metabolic antioxidant. Free Radic Biol Med 20:625–626

    Article  PubMed  CAS  Google Scholar 

  17. Jones W, Li X, Perriott LM et al (2002) Uptake, recycling, and antioxidant functions of α-lipoic acid in endothelial cells. Free Radic Biol Med 33:83–93

    Article  PubMed  CAS  Google Scholar 

  18. Sattler W, Mohr D, Stocker R (1994) Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol 233:469–489

    Article  PubMed  CAS  Google Scholar 

  19. Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737

    Article  PubMed  CAS  Google Scholar 

  20. Bauer J, Margolis M, Schreiner C et al (1992) In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 153:437–449

    Article  PubMed  CAS  Google Scholar 

  21. Pech-Amsellem MA, Myara I, Pico I et al (1996) Oxidative modifications of low-density lipoproteins (LDL) by the human endothelial cell line EA.hy 926. Experientia 52:234–238

    Article  PubMed  CAS  Google Scholar 

  22. Mendiratta S, Qu Z-C, May JM (1998) Erythrocyte ascorbate recycling: antioxidant effects in blood. Free Radic Biol Med 24:789–797

    Article  PubMed  CAS  Google Scholar 

  23. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  24. May JM, Qu Z-C, Mendiratta S (1998) Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289

    Article  PubMed  CAS  Google Scholar 

  25. Tebbe B, Wu SL, Geilen CC et al (1997) l-ascorbic acid inhibits UVA-induced lipid peroxidation and secretion of IL-1α and IL-6 in cultured human keratinocytes in vitro. J Invest Dermatol 108:302–306

    Article  PubMed  CAS  Google Scholar 

  26. May JM, Qu Z-C, Li X (2003) Ascorbic acid blunts oxidant stress due to menadione in endothelial cells. Arch Biochem Biophys 411:136–144

    Article  PubMed  CAS  Google Scholar 

  27. Wells WW, Xu DP (1994) Dehydroascorbate reduction. J Bioenerg Biomembr 26:369–377

    Article  PubMed  CAS  Google Scholar 

  28. Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349

    Article  PubMed  CAS  Google Scholar 

  29. Thor H, Smith MT, Hartzell P et al (1982) The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem 257:12419–12425

    PubMed  CAS  Google Scholar 

  30. Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86:6377–6381

    Article  PubMed  CAS  Google Scholar 

  31. Teichert J, Hermann R, Ruus P et al (2003) Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J Clin Pharmacol 43:1257–1267

    Article  PubMed  CAS  Google Scholar 

  32. Retsky KL, Chen K, Zeind J et al (1999) Inhibition of copper-induced LDL oxidation by vitamin C is associated with decreased copper-binding to LDL and 2-oxo-histidine formation. Free Radic Biol Med 26:90–98

    Article  PubMed  CAS  Google Scholar 

  33. May JM, Qu ZC (2005) Transport and intracellular accumulation of vitamin C in endothelial cells: relevance to collagen synthesis. Arch Biochem Biophys 434:178–186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants DK050435 and AT001062. Media for cell culture was prepared by the Cell Culture Core of the Vanderbilt Diabetes Research and Training Center (DK20593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabharwal, A.K., May, J.M. α-Lipoic acid and ascorbate prevent LDL oxidation and oxidant stress in endothelial cells. Mol Cell Biochem 309, 125–132 (2008). https://doi.org/10.1007/s11010-007-9650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9650-z

Keywords

Navigation