Skip to main content
Log in

Non-stationary Geostatistical Modeling Based on Distance Weighted Statistics and Distributions

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

A common assumption in geostatistics is that the underlying joint distribution of possible values of a geological attribute at different locations is stationary within a homogeneous domain. This joint distribution is commonly modeled as multi-Gaussian, with correlations defined by a stationary covariance function. This results in attribute maps that fail to reproduce local changes in the mean, in the variance and, particularly, in the spatial continuity. The proposed alternative is to build local distributions, variograms, and correlograms. These are inferred by weighting the samples depending on their distance to selected locations. The local distributions are locally transformed into Gaussian distributions embedding information on the local histogram. The distance weighted experimental variograms and correlograms are able to adapt to local changes in the direction and range of spatial continuity. The automatically fitted local variogram models and the local Gaussian transformation parameters are used in spatial estimation algorithms assuming local stationarity. The resulting maps are rich in nonstationary spatial features. The proposed process implies a higher computational effort than traditional stationary techniques, but if data availability allows for a reliable inference of the local distributions and statistics, a higher accuracy of estimates can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alabert F (1987) The practice of fast conditional simulations through the LU decomposition of the covariance matrix. Math Geol 19:369–386. doi:10.1007/bf00897191

    Article  Google Scholar 

  • Boisvert J, Manchuk J, Deutsch C (2009) Kriging in the presence of locally varying anisotropy using non-Euclidean distances. Math Geosci 41:585–601. doi:10.1007/s11004-009-9229-1

    Article  Google Scholar 

  • Borradaile G (2003) Statistics of earth science data: their distribution in time, space, and orientation. Springer, Berlin Heidelberg

    Google Scholar 

  • Bourgault G (1997) Spatial declustering weights. Math Geol 29:277–290. doi:10.1007/bf02769633

    Article  Google Scholar 

  • Brunsdon C, Fotheringham A, Charlton M (2002) Geographically weighted summary statistics—a framework for localised exploratory data analysis. Comput Environ Urban 26:501–524. doi:10.1016/s0198-9715(01)00009-6

    Article  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Cressie N (1985) Fitting variogram models by weighted least squares. Math Geol 17:563–586. doi:10.1007/bf01032109

    Article  Google Scholar 

  • Davis J (2002) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • Deutsch C (2002) Geostatistical reservoir modeling. Oxford University Press, New York

    Google Scholar 

  • Deutsch C, Journel A (1998) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Dimitrakopoulos R, Luo X (2004) Generalized sequential Gaussian simulation on group size ν and screen-effect approximations for large field simulations. Math Geol 36:567–591. doi:10.1023/B:MATG.0000037737.11615.df

    Article  Google Scholar 

  • Emery X (2010) Iterative algorithms for fitting a linear model of coregionalization. Comput Geosci 36:1150–1160. doi:10.1016/j.cageo.2009.10.007

    Article  Google Scholar 

  • Fotheringham A (1997) Trends in quantitative methods I: stressing the local. Prog Hum Geogr 21:88–96. doi:10.1191/030913297676693207

    Article  Google Scholar 

  • Fotheringham A, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, New York

    Google Scholar 

  • Gómez-Hernández JJ, Cassiraga EF (1993) Theory and practice of sequential simulation. In: Armstrong M, Dowd PA (eds) Geostatistical simulations: proceedings of the geostatistical simulation workshop. Kluwer Academic, Fontainebleau, France

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gringarten E, Deutsch C (2001) Teacher’s aide variogram interpretation and modeling. Math Geol 33:507–534. doi:10.1023/a:1011093014141

    Article  Google Scholar 

  • Haas T (1990) Kriging and automated variogram modeling within a moving window. Atmos Environ, A Gen Top 24:1759–1769. doi:10.1016/0960-1686(90)90508-k

    Article  Google Scholar 

  • Harris P, Charlton M, Fotheringham A (2010) Moving window kriging with geographically weighted variograms. Stoch Environ Res Risk Assess 24:1193–1209. doi:10.1007/s00477-010-0391-2

    Article  Google Scholar 

  • Isaaks E, Srivastava R (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Journel A (1986) Geostatistics: models and tools for the earth sciences. Math Geol 18:119–140. doi:10.1007/bf00897658

    Article  Google Scholar 

  • Journel A, Huijbregts C (1978) Mining geostatistics. Academic Press, New York

    Google Scholar 

  • Korvin G (1982) Axiomatic characterization of the general mixture rule. Geoexploration 19:267–276. doi:10.1016/0016-7142(82)90031-x

    Article  Google Scholar 

  • Machuca-Mory D, Deutsch C (2008) Location dependent variograms. In: Ortiz JM, Emery X (eds) Geostats 2008: proceedings of the eighth international geostatistics congress. University of Chile, Santiago, Chile, pp 497–506

    Google Scholar 

  • Marchant B, Lark R (2004) Estimating variogram uncertainty. Math Geol 36:867–898. doi:10.1023/B:MATG.0000048797.08986.a7

    Article  Google Scholar 

  • Matheron G (1970) La théorie des variables régionalisées et ses applications. Cahiers du Centre de Morphologie Mathématique de Fontainebleau. Ecole des Mines de Paris

  • McLennan J (2007) The decision of stationarity. Dissertation, University of Alberta, Canada, 191 pp

  • Monestiez P, Switzer P (1991) Semiparametric estimation of nonstationary spatial covariance models by metric multidimensional scaling. Technical report, Stanford University, USA, 29 pp

  • Muñoz-Pardo JF (1987) Approche géostatistique de la variabilité spatiale des milieux géophysiques: application à l’échantillonnage de phénomènes bidimensionnels par simulation d’une fonction aléatoire. Dissertation, University Grenoble-1, France, 200 pp

  • Myers D (1989) To be or not to be… stationary? That is the question. Math Geol 21:347–362. doi:0882-8121/89/0400-0347506.00/1

    Article  Google Scholar 

  • Omre H (1984) The variogram and its estimation. In: Verly G, David M, Marechal A, Journel A (eds) Geostatistics for natural resources characterization proceedings of NATO ASI conference at Lake Tahoe, vol 1. Reidel, Dordrecht, pp 107–125.

    Google Scholar 

  • Pardo-Igúzquiza E (1999) VARFIT: a Fortran-77 program for fitting variogram models by weighted least squares. Comput Geosci 25:251–261. doi:10.1016/s0098-3004(98)00128-9

    Article  Google Scholar 

  • Rivoirard J (1994) Introduction to disjunctive kriging and non-linear geostatistics. Clarendon Press, Oxford

    Google Scholar 

  • Sampson PD, Guttorp PT (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87:108–119

    Article  Google Scholar 

  • Vann J, Sans H (1996) Global resource estimation and change of support at the enterprise gold mine, pine creek, northern territory-application of the geostatistical discrete Gaussian model. In: Proceedings of APCOM XXV 1995: application of computers and operations in the minerals industries. Australasian Institute of Mining and Metallurgy, Brisbane

    Google Scholar 

  • Verly G (1983) The multiGaussian approach and its applications to the estimation of local reserves. Math Geol 15:259–286. doi:10.1007/bf01036070

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin Heidelberg

    Google Scholar 

  • Wasserman L (2006) All of nonparametric statistics. Springer, New York

    Google Scholar 

  • Webster R, Oliver MA (1992) Sample adequately to estimate variograms of soil properties. J Soil Sci 43:177–192. doi:10.1111/j.1365-2389.1992.tb00128.x

    Article  Google Scholar 

  • Xu W (1996) Conditional curvilinear stochastic simulation using pixel-based algorithms. Math Geol 28:937–949. doi:10.1007/bf02066010

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the industry sponsors of the Centre for Computational Geostatistics at the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Machuca-Mory.

Appendices

Appendix A: Locally Weighted Statistics

Weighted local univariate statistics have been previously presented as geographically weighted statistics (Brunsdon et al. 2002). For a set of calibrated weights \(\hat{\omega} (\mathbf{u}_{\alpha} ;\mathbf{o})\), α=1,…,n, anchored at point o, the local mean and variance are obtained from

(A.1)

and

(A.2)

Given a separation vector h, the locally weighted variograms are estimated by (Machuca-Mory and Deutsch 2008; Harris et al. 2010)

(A.3)

where ω′(u α ,u α +h;o) are the standardized 2-point distance weights and N(h) is the number of pairs separated by h. The local experimental covariance can be estimated as

$$ \hat{C}(\mathbf{h};\mathbf{o}) = \sum _{\alpha = 1}^{N(\mathbf{h})} \omega'(\mathbf{u}_{\alpha} ,\mathbf{u}_{\alpha} + \mathbf{h};\mathbf{o}) \bigl[ z( \mathbf{u}_{\alpha} ) - \hat{m}_{ - \mathbf{h}}(\mathbf{o}) \bigr] \bigl[ z( \mathbf{u}_{\alpha} + \mathbf{h}) - \hat{m}_{\mathbf{ + h}}(\mathbf{o}) \bigr].\mbox{\qquad} $$
(A.4)

The tail and head local means are obtained from

$$ \everymath{\displaystyle }\begin{array}{l} \hat{m}_{\mathbf{ - h}}(\mathbf{o}) = \sum_{\alpha = 1}^{N(\mathbf{h})} \omega'(\mathbf{u}_{\alpha} ,\mathbf{u}_{\alpha} + \mathbf{h};\mathbf{o}) \cdot z(\mathbf{u}_{\alpha} ) , \\[5pt] \hat{m}_{\mathbf{ + h}}(\mathbf{o}) = \sum_{\alpha = 1}^{N(\mathbf{h})} \omega'(\mathbf{u}_{\alpha} ,\mathbf{u}_{\alpha} + \mathbf{h};\mathbf{o}) \cdot z(\mathbf{u}_{\alpha} + \mathbf{h}) . \end{array} $$
(A.5)

And the local experimental correlogram is estimated as

(A.6)

The required local tail and head variances are estimated by

$$ \everymath{\displaystyle }\begin{array} {l} \hat{\sigma}_{ - \mathbf{h}}^{2}( \mathbf{o}) = \sum_{\alpha = 1}^{N(\mathbf{h})} \omega'(\mathbf{u}_{\alpha} ,\mathbf{u}_{\alpha} + \mathbf{h};\mathbf{o}) \cdot \bigl[ z(\mathbf{u}_{\alpha} ) - \hat{m}_{\mathbf{ - h}}(\mathbf{o}) \bigr]^{2} , \\[5pt] \hat{\sigma}_{ + \mathbf{h}}^{2}(\mathbf{o}) = \sum _{\alpha = 1}^{N(\mathbf{h})} \omega'(\mathbf{u}_{\alpha} ,\mathbf{u}_{\alpha} + \mathbf{h};\mathbf{o}) \cdot \bigl[ z( \mathbf{u}_{\alpha} + \mathbf{h}) - \hat{m}_{\mathbf{ + h}}(\mathbf{o}) \bigr]^{2}. \end{array} $$
(A.7)

Appendix B: Hermite Model of Local Gaussian Transformation

Given a number of quantiles z p (o) of the local distribution, the local Gaussian transformation function is approximated by (Journel and Huijbregts 1978; Wackernagel 2003)

(B.1)

H q [y p ] is the Hermite polynomial of order q, and the corresponding local coefficients ϕ q (o) are obtained by

(B.2)

Depending on the number of samples and the complexity of the cdf, between 50 to 200 local quantiles may suffice for the modeling of the local Gaussian transformation function. The expansion into Hermite polynomials allows for the approximation of the local variance (Rivoirard 1994)

(B.3)

In practice, expansions of degree 20 and 40 are commonly used (Vann and Sans 1996; Wackernagel 2003, p. 247).

Appendix C: Locally Stationary Simple Kriging Estimator and Variance

The locally-stationary simple kriging variance is expressed as

(C.1)

C Z (0;o) is equivalent to the location-dependent variance. The locally stationary simple kriging estimator is

(C.2)

with m(o)as the local mean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machuca-Mory, D.F., Deutsch, C.V. Non-stationary Geostatistical Modeling Based on Distance Weighted Statistics and Distributions. Math Geosci 45, 31–48 (2013). https://doi.org/10.1007/s11004-012-9428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-012-9428-z

Keywords

Navigation