Skip to main content

Advertisement

Log in

Biological soil crust distribution is related to patterns of fragmentation and landuse in a dryland agricultural landscape of southern Australia

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The dryland agricultural landscape of north-west Victoria, Australia, includes isolated remnants of eucalypt woodland that are exposed to ongoing disturbance from sheep grazing and cropping activity. Biological soil crusts are a functionally important feature of these woodland communities. We used a modern form of regression (boosted regression tree (BRT) models) to investigate relationships between crust abundance and environmental and landscape variables. We also investigated whether the use of broad morphological groups of crust organisms is more informative than simply measuring total crust cover. Remnant size was the single most influential variable for crust abundance, with negligible crust cover in small patches (<5 ha). The BRT model also identified relationships between crust abundance and available P, soil C and perennial grass. We argue that disturbance from stock grazing and camping is the mechanism driving these relationships. Other variables related to crust abundance were proximity to the windward edge, litter cover and tree cover. Morphological groups showed a differential response to some variables, suggesting assessment of total cover may mask important patterns in community structure. Crust disturbance represents a serious issue for maintenance of ecosystem function in the study region, particularly loss of crusts from small remnants because the majority of remnants are small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DC, Harper KT, Rushforth SR (1982) Recovery of cryptogamic crusts from grazing on Utah winter ranges. J Range Manage 35:355–359. doi:10.2307/3898317

    Article  Google Scholar 

  • Andrew MH, Lange RT (1986) Development of a new piosphere in arid chenopod shrubland grazed by sheep 1. Changes to the soil surface. Aust J Ecol 11:395–409. doi:10.1111/j.1442-9993.1986.tb01409.x

    Article  Google Scholar 

  • Baldwin LK, Bradfield GE (2007) Bryophyte responses to fragmentation in temperate coastal rainforests: a functional approach. Biol Conserv 136:408–422. doi:10.1016/j.biocon.2006.12.006

    Article  Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57. doi:10.1007/BF00546879

    Article  CAS  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. doi:10.1002/hyp.6325

    Article  CAS  Google Scholar 

  • Belnap J, Eldridge DJ (2003) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer-Verlag, Berlin, pp 363–383

    Google Scholar 

  • Belnap J, Gillette DA (1998) Vulnerability of desert biological crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142. doi:10.1006/jare.1998.0388

    Article  Google Scholar 

  • Beymer RJ, Klopatek JM (1991) Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid Soil Res Rehabil 5:187–198

    CAS  Google Scholar 

  • Beymer RJ, Klopatek JM (1992) Effects of grazing on cryptogamic crusts in Pinyon-juniper woodlands in Grand Canyon National Park. Am Midl Nat 127:139–148. doi:10.2307/2426329

    Article  Google Scholar 

  • Blair GJ, Chinoim N, Lefroy RDB, Anderson GC, Crocker GJ (1991) A sulphur soil test for pastures and crops. Aust J Soil Res 29:619–626. doi:10.1071/SR9910619

    Article  CAS  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163. doi:10.1111/j.1365-2664.2006.01122.x

    Article  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Phillips SL (2005) Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecol Appl 15:1941–1951. doi:10.1890/04-1959

    Article  Google Scholar 

  • Bradstock RA, Cohn JS (2002) Fire regimes and biodiversity in semi-arid Mallee ecosystems. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge

    Google Scholar 

  • Briggs D, Smithson P, Addison K, Atkinson K (1995) Fundamentals of the physical environment. Routledge, London

    Google Scholar 

  • Colwell JD (1965) An automated procedure for the determination of phosphorus in sodium hydrogen carbonate extracts of soils. Chem Ind 22(May):893–895

    Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modelling and prediction. Ecology 88:243–251. doi:10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Department of Sustainability and Environment (2004) Ecological vegetation class bioregion benchmark for vegetation quality assessment. Victorian government department of sustainability and environment

  • Dougill AJ, Thomas AD (2004) Kalahari sand soils: spatial heterogeneity, biological soil crusts and land degradation. Land Degrad Dev 15:233–242. doi:10.1002/ldr.611

    Article  Google Scholar 

  • Downing AJ, Selkirk PM (1993) Bryophytes on the calcareous soils of Mungo National Park, an arid area of southern central Australia. Great Basin Nat 53:13–23

    Google Scholar 

  • Duncan DH, Dorrough J, White M, Moxham C (2008) Blowing in the wind? Nutrient enrichment of remnant woodlands in an agricultural landscape. Landscape Ecol 23(1):107–119. doi:10.1007/s10980-007-9160-0

    Article  Google Scholar 

  • Duncan DH, Durrough JW (In review) Historical and current land use shape landscape restoration options in the Australian wheat and sheep farming zone. Landscape and Urban Planning

  • Eldridge DJ (1998a) Soil crust lichens and mosses on calcrete-dominant soils at Maralinga in arid South Australia. J Adel Botanic Gardens 18:9–24

    Google Scholar 

  • Eldridge DJ (1998b) Trampling of microphytic crusts on calcareous soils and its impact on erosion under rain-impacted flow. Catena 33:221–239. doi:10.1016/S0341-8162(98)00075-7

    Article  Google Scholar 

  • Eldridge DJ (1999) Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia. Acta Oecol 20:159–170. doi:10.1016/S1146-609X(99)80029-0

    Article  Google Scholar 

  • Eldridge DJ (2001) Biological soil crusts of Australia. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer-Verlag, Berlin, pp 119–131

    Google Scholar 

  • Eldridge DJ, Bradstock RA (1994) The effect of time since fire on the cover and composition of cryptogamic soil crusts on Eucalyptus shrubland soil. Cunninghamia 3:521–527

    Google Scholar 

  • Eldridge DJ, Freudenberger D, Koen TB (2006) Diversity and abundance of biological soil crust taxa in relation to fine and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia. Plant Soil 281:255–268. doi:10.1007/s11104-005-4436-0

    Article  CAS  Google Scholar 

  • Eldridge DJ, Kinnell PIA (1997) Assessment of erosion rates from microphyte-dominated calcareous soils under rain-impacted flow. Aust J Soil Res 35:475–489. doi:10.1071/S96072

    Article  Google Scholar 

  • Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecol 137:101–114. doi:10.1023/A:1008036214140

    Article  Google Scholar 

  • Eldridge DJ, Rosentreter R (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25. doi:10.1006/jare.1998.0468

    Article  Google Scholar 

  • Eldridge DJ, Tozer ME (1997a) Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia. Bryologist 100:28–39

    Google Scholar 

  • Eldridge DJ, Tozer ME (1997b) A practical guide to soil lichens and bryophytes of Australia’s dry country. Department of Land and Water Conservation, Sydney

    Google Scholar 

  • Elith JE, Leathwick JR, Hastie T (2008) Boosted regression trees—a new technique for modelling ecological data. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  PubMed  CAS  Google Scholar 

  • George DB, Roundy BA, St Clair LL (2003) The effects of microbiotic soil crusts on soil water loss. Arid Land Res Manage 17:113–125. doi:10.1080/15324980301588

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference and prediction. Springer-Verlag, New York

    Google Scholar 

  • Hawkes CV (2003) Nitrogen cycling mediated by biological soil crusts and arbuscular mycorrhizal fungi. Ecology 84:1553–1562. doi:10.1890/0012-9658(2003)084[1553:NCMBBS]2.0.CO;2

    Article  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634. doi:10.1016/j.jaridenv.2005.11.014

    Article  Google Scholar 

  • Leathwick JR, Elith J, Chadderton L, Rowe D, Hastie T (2008) Dispersal, disturbance, and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. J Biogeogr 35:1481–1497. doi:10.1111/j.1365-2699.2008.01887.x

    Article  Google Scholar 

  • Lechmere-Oertel RG, Colwing RM, Kerley GIH (2005) Landscape dysfunction and reduced spatial heterogeneity in soil resources and fertility in semi-arid succulent thicket, South Africa. Austral Ecol 30:615–624. doi:10.1111/j.1442-9993.2005.01495.x

    Article  Google Scholar 

  • Mallee Catchment Management Authority (2003) Mallee regional catchment strategy 2003–2008. Mallee CMA, Mildura

  • Martinez I, Escudero A, Maestre FT, de la Cruz A, Guerrero C, Rubio A (2006) Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust J Bot 54:339–348. doi:10.1071/BT05078

    Article  Google Scholar 

  • Okin GS, Gillete DA, Herrick JE (2006) Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J Arid Environ 65:253–275. doi:10.1016/j.jaridenv.2005.06.029

    Article  Google Scholar 

  • Ponzetti JM, McCune BP (2001) Biotic soil crusts of Oregon’s shrub steppe: community composition in relation to soil chemistry, climate and livestock activity. Bryologist 104:212–225. doi:10.1639/0007-2745(2001)104[0212:BSCOOS]2.0.CO;2

    Article  Google Scholar 

  • Pracilio G, Adams ML, Smettem KRJ, Harper RJ (2006) Determination of spatial distribution patterns of clay and plant available potassium contents in surface soils at the farm scale using high resolution gamma ray spectrometry. Plant Soil 282:67–82. doi:10.1007/s11104-005-5229-1

    Article  CAS  Google Scholar 

  • Prasse R, Bornkamm R (2000) Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecol 150:65–75. doi:10.1023/A:1026593429455

    Article  Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and chemical methods. Inkata Press, Melbourne

    Google Scholar 

  • Renzhong W, Ripley EA (1997) Effects of grazing on a Leymus chinensis grassland on the Songnen plain of north-eastern China. J Arid Environ 36:307–318. doi:10.1006/jare.1996.0214

    Article  Google Scholar 

  • Ridgeway G (2004) gbm: generalized boosted regression models. R. package, version 1.3–5. Available at: http://www.i-pensieri.com/gregr/gbm.shtml

  • Rogers RW (1972) Soil surface lichens in arid and subarid South-eastern Australia. III. The relationship between distribution and environment. Aust J Bot 20:301–316. doi:10.1071/BT9720301

    Article  Google Scholar 

  • Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100:447–458. doi:10.1034/j.1600-0706.2003.12058.x

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry. W. H. Freeman and Company, New York

    Google Scholar 

  • Su Y-G, Li X-R, Cheng Y-W, Tan H-J, Jia R-L (2007) Effects of biological soil crusts on emergence of desert vascular plants in North China`. Plant Ecol 191:11–19. doi:10.1007/s11258-006-9210-8

    Article  Google Scholar 

  • Sweeney RA, Rexroad PR (1987) Comparison of LECO FP-228 “nitrogen determinator” with AOAC copper catalyst Kjeldahl method for crude protein. J Assoc Off Anal Chem 70:1028–1030

    PubMed  CAS  Google Scholar 

  • Thompson WA, Eldridge DJ, Bonser SP (2006) Structure of biological soil crust communities in Callitris glaucophylla woodlands of New South Wales, Australia. J Veg Sci 17:271–280. doi:10.1658/1100-9233(2006)017[0271:SOBSCC]2.0.CO;2

    Article  Google Scholar 

  • Venables WN, Dichmont CM (2004) GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish Res 70:319–337. doi:10.1016/j.fishres.2004.08.011

    Article  Google Scholar 

  • Vesk PA, Leishman MR, Westoby M (2004) Simple traits do not predict grazing response in Australian dry shrublands and woodlands. J Appl Ecol 41:22–31. doi:10.1111/j.1365-2664.2004.00857.x

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. doi:10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • West NE (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Adv Ecol Res 20:180–209

    Google Scholar 

  • White M, Oates A, Barlow T, Pelikan M, Brown J, Rosengren N et al (2003) The vegetation of north-west Victoria: a report to the Wimmera. North Central and Mallee Catchment Management Authorities, Arthur Rylah Institute for Environmental Research, Melbourne

    Google Scholar 

  • White MD (2006) The Mallee vegetation of north western Victoria. Proc R Soc Vic 118:229–243

    Google Scholar 

  • Williams JD, Dobrowolski JP, West NE, Gillette DA (1995) Micrphytic crust influence on wind erosion. Trans ASAE 38:131–137

    Google Scholar 

  • Wood S (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, Boca Raton, Florida

    Google Scholar 

  • Yair A (2003) Effects of biological soil crusts on water redistribution in the Negev Desert, Israel: a case study in longitudinal dunes. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer-Verlag, Berlin, pp 303–314

    Google Scholar 

  • Yates CJ, Norton DA, Hobbs RJ (2000) Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Austral Ecol 25:36–47. doi:10.1046/j.1442-9993.2000.01030.x

    Google Scholar 

Download references

Acknowledgements

We thank Claire Moxham and Matt White for assistance with site selection, John Morgan for advice during project design, David Eldridge for comments that improved the clarity of this manuscript and Claire Moxham, Lucy Simnett and Sally Kenny for field assistance. Soil analyses were performed by CBSP Laboratories, Bibra Lake, Western Australia. Numerous Landholders and Parks Victoria allowed us to conduct surveys on their properties. Birchip Cropping Group assisted with landholder engagement. This project was supported by the Holsworth Wildlife Research Fund, North Central and Mallee Catchment Management Authorities through Natural Heritage Trust and the National Action Plan for Salinity and Water Quality, and the Victorian State Government initiative “Our Rural Landscapes.” Jane Elith was funded by ARC grant DP0772671, and the Australian Centre of Excellence for Risk Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassia F. Read.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Read, C.F., Duncan, D.H., Vesk, P.A. et al. Biological soil crust distribution is related to patterns of fragmentation and landuse in a dryland agricultural landscape of southern Australia. Landscape Ecol 23, 1093–1105 (2008). https://doi.org/10.1007/s10980-008-9270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-008-9270-3

Keywords

Navigation