Skip to main content

Advertisement

Log in

Urban plant species patterns are highly driven by density and function of built-up areas

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

This paper aims to assess the relative importance of the type of built-up area in structuring plant species composition and richness in urbanised environments. The study was carried out in the city of Brussels where all vascular plant species were recorded in 189 grid cells of 1 km2 each. The effect of urban land use type on species composition was investigated using first Canonical Correspondence Analysis. Densely built-up area was the most powerful predictor for species composition, followed by industrial built-up areas, half open or open built-up areas with plantations, and open built-up areas with much natural vegetation in the surroundings. Indicator species were found for each type of built-up area and a response curve to the amount of built land was produced using Generalised Additive Modelling. Various types of built-up areas had different effects on environmental conditions as inferred by Ellenberg’s indicator values, as well as on the species richness, species rarity, number of exotic species and proportion of extinction-prone species. It is concluded that future ecological studies should not treat urban areas as homogeneous areas by combining all anthropogenic factors into one aggregated variable. Instead, the urban matrix should be categorised in subsystems as it is multidimensional and highly variable across space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Proceeding of the second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Alberti M, Marzluff JM, Bradley G, Ryan C, Shulenberger E, Zumbrunnen C (2003) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53:1169–1179

    Article  Google Scholar 

  • Austin MP (1999) The potential contribution of vegetation ecology to biodiversity research. Ecography 22:465–484

    Google Scholar 

  • Austin MP, Meyers JA (1996) Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. Forest Ecol Manag 85:95–106

    Article  Google Scholar 

  • Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche – environmental niches of 5 eucalyptus species. Ecol Monogr 60:161–177

    Article  Google Scholar 

  • Bio AMF, Alkemade R, Barendregt A (1998) Determining alternative models for vegetation response analysis: a non-parametric approach. J Veg Sci 9:5–16

    Article  Google Scholar 

  • Brichau I, Ameeuw G, Gryseels M, Paelinckx D (2000) Biologische Waarderingskaart, versie 2. Kaartbladen 31–39. Mededelingen van het Instituut voor Natuurbehoud 15. IN/BIM, Brussels

  • Carreiro MM, Howe K, Parkhurst DF, Pouyat RV (1999) Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biol Fert Soils 30:258–268

    Article  Google Scholar 

  • Chiesura A (2004) The role of urban parks for the sustainable city. Landsc Urban Plan 68:129–138

    Article  Google Scholar 

  • Cornelis J, Hermy M (2004) Biodiversity relationships in urban and suburban parks in Flanders. Landsc Urban Plan 69:385–401

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scrip Geobot 18:1–248

    Google Scholar 

  • ESRI (1996) ArcView spatial analyst. Advanced spatial analysis using raster and vector data. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100

    Article  Google Scholar 

  • Godefroid S, Koedam N (2003a) How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Global Ecol Biogeogr 12:287–298

    Article  Google Scholar 

  • Godefroid S, Koedam N (2003b) Distribution pattern of the flora in a peri-urban forest: an effect of the city-forest ecotone. Landsc Urban Plan 65:169–185

    Article  Google Scholar 

  • Godefroid S, Koedam N (2004a) Interspecific variation in soil compaction sensitivity among forest floor species. Biol Conserv 119:207–217

    Article  Google Scholar 

  • Godefroid S, Koedam N (2004b) The impact of forest paths upon adjacent vegetation: effects of the path substrate on the species composition and soil compaction. Biol Conserv 119:405–419

    Article  Google Scholar 

  • Godefroid S, Rucquoij S, Koedam N (2006) Spatial variability of summer microclimates and vegetation response along transects within clearcuts in a beech forest. Plant Ecol 185:107–121

    Article  Google Scholar 

  • Godefroid S, Monbaliu D, Koedam N (2007) The role of soil and microclimate variables in the distribution patterns of urban wasteland flora. Landsc Urban Plan 80:45–55

    Google Scholar 

  • Graae BJ, Sunde PB (2000) The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography 23:720–731

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin-Hyman, London

    Google Scholar 

  • Grove JM, Burch WR (1997) A social ecology approach and applications of urban ecosystem and landscape analyses: a case study of Baltimore, Maryland. Urban Ecosyt 1:259–275

    Article  Google Scholar 

  • Grytnes JA, Birks HJB, Peglar SM (1999) Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. Nordic J Bot 19:489–503

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalised additive models. Chapman & Hall, London

    Google Scholar 

  • Heegaard E (2002) A model for alpine species distribution in relation to snowmelt time and altitude. J Veg Sci 13:493–504

    Article  Google Scholar 

  • Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British plants. ECOFACT vol 2, Technical annex. Institute of Terrestrial Ecology, Huntingdon

  • Honnay O, Degroote B, Hermy M (1998) Ancient-forest plant species in Western Belgium: a species list and possible ecological mechanisms. Belg J Bot 130:139–154

    Google Scholar 

  • Honnay O, Endels P, Vereecken H, Hermy M (1999) The role of patch area and habitat diversity in explaining native plant species richness in disturbed suburban forest patches in northern Belgium. Divers Distrib 5:129–141

    Article  Google Scholar 

  • Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci USA 100:8788–8792

    Article  PubMed  CAS  Google Scholar 

  • IBGE-BIM (1995) Report on the state of the environment in the Brussels Capital Region (in French and Dutch). Les Cahiers de l’IBGE nr. 9. IBGE-BIM, Brussels

  • Kent M, Stevens RA, Zhang L (1999) Urban plant ecology patterns and processes: a case study of the flora of the city of Plymouth, Devon, UK. J Biogeogr 26:1281–1298

    Article  Google Scholar 

  • Kinzig AP, Warren P, Martin C, Hope D, Katti M (2005) The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol Soc 10(1):23 [online]

    Google Scholar 

  • Koh LP, Sodhi NS (2004) Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecol Appl 14:1695–1708

    Article  Google Scholar 

  • Kowarik I (1995) On the role of alien species in urban flora and vegetation. In: Pyšek P, Prach K, Remánek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 85–103

    Google Scholar 

  • Lambinon J, De Langhe JE, Delvosalle L, Duvigneaud J (1998) Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebieden. Nationale Plantentuin van België, Meise

    Google Scholar 

  • Leps J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Lieth H, Berlekamp J, Fuest S, Riediger S (1999) Climate diagram world atlas. CD-series: climate and biosphere. Backuys Publishers, Leiden

    Google Scholar 

  • Liu J (2001) Integrating ecology with human demography, behavior, and socioeconomics: needs and approaches. Ecol Model 140:1–8

    Article  Google Scholar 

  • Maurer U, Peschel T, Schmitz S (2000) The flora of selected urban land-use types in Berlin and Potsdam with regard to nature conservation in cities. Landsc Urban Plan 46:209–215

    Article  Google Scholar 

  • McCune B, Mefford MJ (1997) PC-ORD. Multivariate analysis of ecological data. Version 3.0. MjM Software Design, Gleneden Beach, Oregon, USA

    Google Scholar 

  • McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K (1997) Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst 1:21–36

    Article  Google Scholar 

  • McIntyre NE, Knowles-Yánez K, Hope D (2000) Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. Urban Ecosyst 4:5–24

    Article  Google Scholar 

  • Miller JR, Hobbs RJ (2002) Conservation where people live and work. Conserv Biol 16:330–337

    Article  Google Scholar 

  • Naveh Z (2000) The total human ecosystem: integrating ecology and economics. BioScience 50:357–361

    Article  Google Scholar 

  • Orr DW (2002) The nature of design: ecology, culture, and human intention. Oxford University Press, Oxford

    Google Scholar 

  • Roy DB, Hill MO, Rothery P (1999) Effects of urban land cover on the local species pool in Britain. Ecography 22:507–515

    Article  Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. KTK Scientific Publishers, Tokyo

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Spronken-Smith RA, Oke TR (1998) The thermal regime of urban parks in two cities with different summer climates. Int J Remote Sens 19:2085–2104

    Article  Google Scholar 

  • Statsoft Inc (2001) STATISTICA (data analysis software system). Version 6. Statsoft Inc., Tulsa

    Google Scholar 

  • Stieperaere H, Fransen K (1982) Standaardlijst van de Belgische vaatplanten, met aanduiding van hun zeldzaamheid en socio-oecologischegroep. Dumortiera 22:1–41

    Google Scholar 

  • Sukopp H, Blume HP, Kunick W (1979) The soil, flora, and vegetation of Berlin’s waste lands. In: Laurie IC (ed) Nature in cities. Chichester, New-York, pp 115–132

  • Svensson MK, Eliasson I (2002) Diurnal air temperatures in built-up areas in relation to urban planning. Landsc Urban Plan 61:37–54

    Article  Google Scholar 

  • ter Braak CJF, Gremmen NJM (1987) Ecological amplitudes of plant species and the internal consistency of Ellenberg’s indicator values for moisture. Vegetatio 69:79–87

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows. User’s guide: software for canonical ordination (version 4.5). Microcomputer power, Ithaca, NY

    Google Scholar 

  • Terborgh J (1974) The preservation of natural diversity: the problem of extinction prone species. BioScience 24:715–722

    Article  Google Scholar 

  • Tüllmann G, Böttcher H (1985) Synanthropic vegetation and structure of urban subsystems. In: Géhu JM (ed) Les végétation nitrophiles et anthropogènes, Colloques Phytosociologiques XII. J. Cramer, Berlin, Stuttgart, pp 481–523

    Google Scholar 

  • United Nations Centre for Human Settlements (1996) An urbanizing world: global report on human settlements, 1996. Oxford University Press, Oxford

    Google Scholar 

  • Vähä-Piikkiö I, Kurtto A, Hahkala V (2004) Species number, historical elements and protection of threatened species in the flora of Helsinki, Finland. Landsc Urban Plan 68:357–370

    Article  Google Scholar 

  • Vetaas OR (2002) Realized and potential climate niches: a comparison of four Rhododendron tree species. J Biogeogr 29:545–554

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenko J, Melillo JM (1997) Human domination on Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wildlife Trust for Birmingham and the Black Country (2000) Habitat Action Plan. Urban «Wasteland». http://www.wildlifetrust.org.uk/urbanwt/ecorecord/bap/html/urban.htm. Last access date: 02/06/05

  • Zerbe S., Maurer U., Schmitz S., Sukopp H (2003) Biodiversity in Berlin and its potential for nature conservation. Landsc Urban Plan 62:139–148

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Brussels Institute for Environment Management (IBGE-BIM) in the framework of the research project “Information and survey network on the biodiversity in Brussels”. We also thank Desiré Paelinckx for the information provided regarding the Biological Valuation Map, and two anonymous reviewers for their valuable comments to an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Godefroid.

Appendix

Appendix

Annex 1

Species name

Abbreviation

Acer platanoides

Acerplat

Blechnum spicant

Blecspic

Calystegia sepium

Calysepi

Carex sylvatica

Caresylv

Chaerophyllum temulum

Chaetemu

Chenopodium hybridum

Chenhybr

Chrysosplenium oppositifolium

Chryoppo

Circaea lutetiana

Circlute

Cornus sanguinea

Cornsang

Cymbalaria muralis

Cymbmura

Daucus carota

Dauccaro

Epilobium ciliatum

Epilcili

Euphorbia peplus

Euphpepl

Galega officinalis

Galeoffi

Galinsoga ciliata

Galicili

Hedera helix

Hedeheli

Hordeum murinum

Hordmuri

Hyacinthoides non-scripta

Hyacnon-

Hyoscyamus niger

Hyosnige

Hypochoeris radicata

Hyporadi

Lathyrus latifolius

Lathlati

Lepidium ruderale

Lepirude

Linaria vulgaris

Linavulg

Lolium perenne

Lolipere

Luzula campestris

Luzucamp

Luzula sylvatica

Luzusylv

Lycopus europaeus

Lycoeuro

Matricaria discoidea

Matrdisc

Matricaria maritima subsp. inodora

Matrmari

Medicago sativa

Medisati

Melilotus albus

Melialbu

Melilotus officinalis

Melioffi

Milium effusum

Milieffu

Mycelis muralis

Mycemura

Plantago lanceolata

Planlanc

Polygonatum multiflorum

Polymult

Polygonum amphibium

Polyamph

Polygonum aviculare

Polyavic

Polygonum hydropiper

Polyhydr

Potentilla reptans

Poterept

Pseudofumaria lutea

Pseulute

Pteridium aquilinum

Pteraqui

Ranunculus sardous

Ranusard

Reseda lutea

Reselu-ea

Reseda luteola

Reselu-la

Rosa canina

Rosacani

Rubus idaeus

Rubuidae

Rumex sanguineus

Rumesang

Salix caprea

Salicapr

Sambucus racemosa

Sambrace

Scrophularia nodosa

Scronodo

Senecio inaequidens

Seneinae

Senecio ovatus

Seneovat

Silene latifolia

Silelati

Solanum nigrum

Solanigr

Stellaria graminea

Stelgram

Syringa vulgaris

Syrivulg

Teucrium scorodonia

Teucscor

Trifolium repens

Trifrepe

Veronica montana

Veromont

Veronica officinalis

Verooffi

Vulpia myuros

Vulpmyur

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godefroid, S., Koedam, N. Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecol 22, 1227–1239 (2007). https://doi.org/10.1007/s10980-007-9102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-007-9102-x

Keywords

Navigation