Skip to main content
Log in

Heat capacity and thermal expansion of icosahedral lutetium boride LuB66

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2–300 K were analysed in the Debye–Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Richards SM, Kasper JS. The crystal structure of YB66. Acta Crystallogr B. 1969;25(2):237–51.

    Article  CAS  Google Scholar 

  2. Mori T. Higher Borides. In: Gschneidner KA, Bunzl J-C, Pecharsky V, editors. Handbook on the physics and chemistry of rare-earths. Amsterdam: Elsevier; 2008. p. 105–73.

    Google Scholar 

  3. Wong J, Tanaka T, Rowen M, Schäfers F, Müller BR, Rek ZU. YB66 a new soft X-ray monochromator for synchrotron radiation. II. Characterization. J Synchrotron Radiat. 1999;6(6):1086–95.

    Article  CAS  Google Scholar 

  4. Tanaka T, Rek ZU, Wong J, Rowen M. FZ crystal growth of monochromator-grade YB66 single crystals as guided by topographic and double-crystal diffraction characterization. J Cryst Growth. 1998;192(1–2):141–51.

    Article  CAS  Google Scholar 

  5. Wong J, Shimkaveg G, Goldstein W, Eckart M, Tanaka T, Rek ZU, Tompkins H. YB66: a new soft-X-ray monochromator for synchrotron radiation. Nucl Instrum Methods A. 1990;291(1–2):243–9.

    Article  Google Scholar 

  6. Flachbart K, Gabani S, Mori T, Siemensmeyer K. Magnetic ordering in RB66 boron-rich borides.In: APS March Meeting, 2010, Portland. K1.034.

  7. Flachbart K, Gabani S, Mori T, Siemensmeyer K. Magnetic ordering in boron-rich borides TbB66 and GdB66. Acta Phys Pol A. 2010;118:875.

    CAS  Google Scholar 

  8. Kim H, Bud’ko SL, Tanatar MA, Avdashchenko DV, Matovnikov AV, Mitroshenkov NV, Novikov VV, Prozorov R. Magnetic properties of RB66 (R = Gd, Tb, Ho, Er, and Lu). J Supercond Nov Magn. 2012;25(7):2371–5.

    Article  CAS  Google Scholar 

  9. Novikov VV, Avdashchenko DV, Bud’ko SL, Mitroshenkov NV, Matovnikov AV, Kim H, Tanatar MA, Prozorov R. Spin glass and glass-like lattice behaviour in HoB66 at low temperatures. Philos Mag. 2013;93(9):1110–23.

    Article  CAS  Google Scholar 

  10. Sirota NN, Novikov VV, Antjukhov AM. Thermodynamic properties of solid solutions of gallium and indium arsenide in the temperature range of 5–300 K. J Phys Chem. 1983;57(3):542.

    CAS  Google Scholar 

  11. Sirota NN, Novikov VV. Heat capacity, mean square ion displacements and lattice parameter of DyB6 at 5–300 K. J Mater Process Manu. 1998;7(1):111–4.

    Article  CAS  Google Scholar 

  12. Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Thermal properties of TbB4. J Therm Anal Calorim. 2013;113(2):779–85.

    Article  CAS  Google Scholar 

  13. Properties, preparation and application of high-melting compounds: reference book. In: Kosolapova TYa, editor. Moscow: Metallurgy; 1986. p. 927.

  14. Ramirez AP, Kowach GR. Large low temperature specific heat in the negative thermal expansion compound ZrW2O8. Phys Rev Lett. 1998;80:4903.

    Article  CAS  Google Scholar 

  15. Slack GA, Oliver DW, Horn FH. Thermal conductivity of boron and some boron compounds. Phys Rev B. 1971;4(6):1714–20.

    Article  Google Scholar 

  16. Cahill DG, Fischer HE, Watson SK, Pohl RO, Slack GA. Thermal properties of boron and borides. Phys Rev B. 1989;40(5):3254–60.

    Article  CAS  Google Scholar 

  17. Mori T, Martin J, Nolas G. Thermal conductivity of YbB44Si2. J Appl Phys. 2007;102:073510.

    Article  Google Scholar 

  18. Mukherjee GD, Bansal C, Chatterjee A. Thermal expansion study of ordered and disordered Fe3Al: an effective approach for the determination of vibrational entropy. Phys Rev Lett. 1996;76:1876–9.

    Article  CAS  Google Scholar 

  19. Madelung O, Rössler U, Schulz M, editors. Non-Tetrahedrally Bonded Elements and Binary Compounds I, vol. 41C., Landolt-Börnstein—group III condensed matter. Berlin: Springer; 1998. p. 1–4.

  20. Tonnies JJ, Gschneidner KA, Spedding FH. Elastic moduli and thermal expansion of lutetium single crystals from 4.2 to 300 K. J Appl Phys. 1971;42:3275.

    Article  CAS  Google Scholar 

  21. Parshin DA. Interactions of soft atomic potentials and universality of low-temperature properties of glasses. Phys Rev B. 1994;49(14):9400–18.

    Article  Google Scholar 

  22. Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Low-frequency modes and peculiarities of lattice thermal properties of RE-tetraborides. Phys Status Solidi B. 2014. In press.

  23. Novikov VV, Morozov AV, Matovnikov AV, Polesskaya YN, Sakhoshko NV, Avdashchenko DV, Kornev BI, Solemennik VD, Novikova VV. Low-temperature heat capacity of rare-earth tetraborides. Solid State Phys. 2011;53(9):1743–7.

    Article  Google Scholar 

  24. Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Heat capacity and thermal expansion of gadolinium tetraboride at low temperatures. J Appl Phys. 2012;111:063907.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Education and Science of the Russian Federation (Project 14.B37.21.0886) and the President Grant (Project 14.124.13.7302-MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Matovnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, V.V., Avdashchenko, D.V., Matovnikov, A.V. et al. Heat capacity and thermal expansion of icosahedral lutetium boride LuB66 . J Therm Anal Calorim 116, 765–769 (2014). https://doi.org/10.1007/s10973-013-3593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3593-2

Keywords

Navigation