Skip to main content
Log in

Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research aimed to investigate the optimum conditions for modification of thermal decomposition properties of ammonium perchlorate (AP) particles through microencapsulation techniques. A solvent/non-solvent method has been used to perform microencapsulation of AP particles with some polymer-coating agents such as viton A and nitrocellulose (NC). Differential scanning calorimetry, thermogravimetry, and scanning electron microscopy have been exploited to investigate the thermal properties, heat of decomposition, and coating morphology of pure and coated samples. The preliminary results revealed that AP microparticle could be effectively coated with both NC and viton, but the latter significantly and unfavorably attenuated heat of decomposition of AP so NC was chosen as an appropriate coating agent for modification of thermal properties of AP. The thermal analysis of NC-coated samples, prepared at optimized coating conditions, showed that its first stage decomposition temperature increases about 12 °C with respect to uncoated sample and reaches to 305 °C. Also, the apparent activation energy (E), ΔG , ΔH , and ΔS of the decomposition processes of the pure and coated AP particles at the optimum conditions were obtained by non-isothermal methods that proposed by ASTM and Ozawa. Finally, the results of this investigation showed that microencapsulation of AP particles with fibrous NC enhance its heat of decomposition (~120 J g−1) with no obvious effect on kinetic parameters and thermal decomposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kadiresh PN, Sridhar BTN. Experimental study on ballistic behaviour of an aluminised AP/HTPB propellant during accelerated aging. J Therm Anal Calorim. 2010;100:331–5.

    Article  CAS  Google Scholar 

  2. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, et al. TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.

    Article  CAS  Google Scholar 

  3. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, et al. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75:551–7.

    Article  CAS  Google Scholar 

  4. Rajić M, Sućeska M. Study of Thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG. J Therm Anal Calorim. 2000;63:375–86.

    Google Scholar 

  5. Zhi J, Tian-Fang W, Shu-Fen L, Feng-Qi Z, Zi-Ru L, et al. Thermal behavior of ammonium perchlorate and metal powders of different grades. J Therm Anal Calorim. 2006;85:315–20.

    Article  CAS  Google Scholar 

  6. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  CAS  Google Scholar 

  7. Kubota N, Hirata N. Inhibition reaction of LiF on the combustion of ammonium perchlorate propellants, twentieth symposium (international) on combustion. 1985;20:2051–2056.

  8. Han X, Sun YL, Wang TF, Lin ZK, Li SF, et al. Thermal decomposition of ammonium perchlorate based mixture with fullerenes. J Therm Anal Calorim. 2008;91:551–7.

    Article  CAS  Google Scholar 

  9. Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.

    Article  CAS  Google Scholar 

  10. Herbig JA. Encyclopedia of chemical technology (Kirk-Othmer), vol. 13. New York: Interscience; 1967.

    Google Scholar 

  11. Finch CA. Microencapsulation, Ulmann,s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  12. Hirech K, Payan S, Carnelle G, Brujes L, Legrand J. Microencapsulation of an insecticide by interfacial polymerisation. Powder Technol. 2003;130:324–30.

    Article  CAS  Google Scholar 

  13. Castorina TC, Smetana AF. Effect of polymer coating on ammonium nitrate substrate. J Appl Polym Sci. 1974;18:1373–83.

    Article  CAS  Google Scholar 

  14. Patil KC, Ramanath M, Paiverneker VR. Effect of polymer coating on the thermal decomposition of composite propellant oxidizers. Combust Flame. 1981;42:157–63.

    Article  CAS  Google Scholar 

  15. Kwon YS, Gromov AA, Strokova JI. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl Surf Sci. 2007;253:5558–64.

    Article  CAS  Google Scholar 

  16. Gromov A, Ilyin A. Characterization of aluminum powders: II. Aluminum nanopowders passivated by non-Inert coatings. Propellant Explos Pyrotech. 2006;31:401–8.

    Article  CAS  Google Scholar 

  17. Zhang L, Ranade MB, Gentry JW. Formation of organic coating on ultrafine silver particles using a gas-phase process. J Aerosol Sci. 2004;35:457–71.

    Article  Google Scholar 

  18. Dedgaonkar VG, Chaudhari MB. Effect of gamma/neutron irradiation and permanganate additives on thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1981;20:339–43.

    Article  CAS  Google Scholar 

  19. Mattos EC, Moreira ED, Diniz MF, Dutra RCL, Silva G, Iha K, Teipel U. Characterization of polymer-coated RDX and HMX particles. Propellant Explos Pyrotech. 2008;33:44–9.

    Article  CAS  Google Scholar 

  20. Berge B, Charsley EL, Rooney JJ, Warrington SB. Quantitative studies on the zirconium-potassium perchlorate-nitrocellulose pyrotechnic system using differential scanning calorimetry and chemical analysis. Thermochim Acta. 1995;255:227–39.

    Article  Google Scholar 

  21. Tappan BC, Brill TB. Thermal decomposition of energetic materials 86. Cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose. Propellant Explos Pyrotech. 2003;28:223–30.

    Article  CAS  Google Scholar 

  22. Ebeling H, Schmid H, Eisenreich N, Weiser V. Development of gas generators for fire extinguishing. Propellant Explos Pyrotech. 1997;22:170–5.

    Article  CAS  Google Scholar 

  23. Pourmortazavi SM, Hosseinia SG, Rahimi-Nasrabadib M, Hajimirsadeghia SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  Google Scholar 

  24. Eslami A, Hosseini SG, Shariaty SHM. Stabilization of ammonium azide particles through its microencapsulation with some organic coating agents. Powder Technol. 2011;208:137–43.

    Article  CAS  Google Scholar 

  25. Dedgaonkar VG, Sarwade DB. Effects of different additives on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1990;36:223–9.

    Article  CAS  Google Scholar 

  26. Singh G, Shrimal AK, Kapoor IPS, Singh CP, Kumar D, et al. Kinetics of thermolysis of some transition metal perchlorate complexes with 1,6-diaminohexane ligand part 50. J Therm Anal Calorim. 2011;103:149–55.

    Article  CAS  Google Scholar 

  27. Chen L-J, Li G-S, Li L-P. CuO nanocrystals in thermal decomposition of ammonium perchlorate stabilization, structural characterization and catalytic activities. J Therm Anal Calorim. 2008;91:581–7.

    Article  CAS  Google Scholar 

  28. Fujimura K, Miyake A. The effect of specific surface area of TiO2 on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2010;99:27–31.

    Article  CAS  Google Scholar 

  29. Chen L-J, Li G-S, Qi P, Li L-P. Thermal decomposition of ammonium perchlorate activated via addition of NiO nanocrystals. J Therm Anal Calorim. 2008;92:765–9.

    Article  CAS  Google Scholar 

  30. Kannan MP. Thermal decomposition of doped ammonium perchlorate. J Therm Anal Calorim. 1987;32:1219–27.

    Article  CAS  Google Scholar 

  31. Sun Y-L, Li S-F, Ding D-H. Effect of ammonium oxalate/strontium carbonate on the burning rate characteristics of composite propellants. J Therm Anal Calorim. 2006;86:497–503.

    Article  CAS  Google Scholar 

  32. Yu Z, Sun Y, Wei W, Lu L, Wang X. Preparation of NdCrO3 nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate by DSC/TG-MS. J Therm Anal Calorim. 2009;97:903–9.

    Article  CAS  Google Scholar 

  33. Nandagopal S, Mehilal M, Tapaswi MA, Jawalkar SN, Radhakrishnan KK, Bhattacharya B. Effect of coating of ammonium perchlorate with fluorocarbon on ballistic and sensitivity properties of AP/Al/HTPB propellant. Propellant Explos Pyrotech. 2009;34:526–31.

    CAS  Google Scholar 

  34. Hosseini SG, Eslami A. Orthogonal array design method for optimization experiments of sodium azide microencapsulation with stearic acid. Prog Org Coat. 2010;68:313–8.

    Article  CAS  Google Scholar 

  35. Jono K, Ichikawa H, Miyamoto M, Fukumori Y. A review of particulate design for pharmaceutical powders and their production by spouted bed coating. Powder Technol. 2000;113:269–77.

    Article  CAS  Google Scholar 

  36. Jaworek A. Micro and nanoparticle production by electrospraying. Powder Technol. 2007;176:18–35.

    Article  CAS  Google Scholar 

  37. Mujumdar A, Wei D, Dave RN, Pfeffer R, Wu C-Y. Improvement of humidity resistance of magnesium powder using dry particle coating. Powder Technol. 2004;140:86–97.

    Article  CAS  Google Scholar 

  38. Shu-hai Z. Coating of magnesium powder by rapid expansion of supercritical solution method. Trans Nonferrous Met Soc China. 2006;16:s285–8.

    Article  Google Scholar 

  39. Said AA. The role of copper-chromium oxide catalysts in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1991;37:959–67.

    Article  Google Scholar 

  40. ASTM E698-11. Standard test method for Arrhenius kinetic constants for thermally unstable materials. 2011. doi:10.1520/E0698-11.

  41. Hosseini SG, Eslami A. Investigation on the reaction of powdered tin as a metallic fuel with some pyrotechnic oxidizers. Propellant Explos Pyrotech. 2011;36:175–81.

    Article  CAS  Google Scholar 

  42. Criado JM, Perez-Maqueda LA, Sanchez-Jimenez PE. Dependence of the pre exponential factor on temperature. J Therm Anal Calorim. 2005;82:671–5.

    Article  CAS  Google Scholar 

  43. Eslami A, Hosseini SG. Improving safety performance of lactose-fueled binary pyrotechnic systems of smoke dyes. J Therm Anal Calorim. 2011;104:671–8.

    Article  CAS  Google Scholar 

  44. Eslami A, Hosseini SG, Pourmortazavi SM. Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems. Fuel. 2008;87:3339–43.

    Article  CAS  Google Scholar 

  45. Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2010;101:1111–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Eslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslami, A., Hosseini, S.G. & Bazrgary, M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim 113, 721–730 (2013). https://doi.org/10.1007/s10973-012-2784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2784-6

Keywords

Navigation