Skip to main content
Log in

Thermal decomposition and glass transition of industrial hydrolysis lignin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal properties of industrial hydrolysis lignin (HL) obtained from bio-ethanol production plants were investigated by thermogravimetry and differential scanning calorimetry. Thermal decomposition of HL was observed in two stages suggesting coexisting carbohydrates. Glass transition temperature (T g) was observed in a temperature range from 248 to 363 K. T g values were lower than that of other industrial lignins, such as kraft lignin or lignosulfate. Enthalpy relaxation was observed as sub-T g, which is not as prominent as other industrial or laboratory scale isolated lignins. T g of HL decreased in the presence of water and saturated at water content (W c) of 0.18 (mass of water/mass of dry HL). The amount of bound water calculated from melting enthalpy of water and W c was ca. 0.18. Thermal decomposition and molecular motion of as obtained industrial HL are affected by coexisting carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cholkin UI. The hydrolysis manufacture technology. Moscow: Forest Industry; 1989.

    Google Scholar 

  2. Lin SY, Dence CW. Methods in lignin chemistry. Berlin: Springer-Verlag; 1992.

    Book  Google Scholar 

  3. Zarubin MJa, Alekseev SR, Krutov SM. Hydrolysed lignin, structure and perspectives of transformation into low molecular products. In: Kennedy JF, Phillips GO, Williams PA, Hatakeyama H, editors. Recent advances in environmentally compatible polymers. Chichester: Woodhead; 2001. p. 155–60.

    Chapter  Google Scholar 

  4. Hatakeyema H. Thermal analysis of environmentally compatible polymers containing plant components in the main chain. J Therm Anal Calorim. 2002;70:755–955.

    Article  Google Scholar 

  5. Hatakayama H, Asano Y, Hatakeyama T. Biobased polymeric materials. In: Chiellini E, Solaro R, editors. Biodegradable polymers and plastic. New York: Kluwer Academic/Plenum; 2003. p. 103–19.

    Chapter  Google Scholar 

  6. Hatakeyama T, Hatakeyama H. Thermal properties of green polymers and biocomposites. Dordrecht: Kluwer Academic; 2004.

    Google Scholar 

  7. Saraf VP, Glasser WG, Wilkes G. Engineering plastics from lignin. VII. Structure property relationships of polybutadiene glycol-containing polyurethane networks. J Appl Polym Sci. 1985;30:3809–23.

    Article  CAS  Google Scholar 

  8. Rials TG, Glasser WG. Enginnering plastics from lignin IV. Effect of crosslink density on polyurethane film properties- variation in NCO:OH ratio. Hotzforschung. 1984;38:191–9.

    Article  CAS  Google Scholar 

  9. Gandini A, Naceur BM, Guo ZX, Montanari S. Lignins as macromonomers for polyesters and polyurethanes. In: Hu TQ, editor. Chemical modification, properties, and usage of lignin. New York: Academic/Plenum; 2002. p. 57–80.

    Chapter  Google Scholar 

  10. Yoshida H, Mörck R, Kringstad KP, Hatakeyama H. Kraft lignin in polyurethanes. II. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft ligni-polyether triol-polymeric MDI system. J Appl Polym Sci. 1990;40:1819–32.

    Article  CAS  Google Scholar 

  11. Nakamura K, Hatakeyama T, Hatakeyama H. Thermal properties of solvolysis lignin-derived polyurethanes. Polym Adv Technol. 1992;3:151–5.

    Article  CAS  Google Scholar 

  12. Hatakeyama T, Quinn FX. Thermal analysis, fundamentals and applications to polymer science. 2nd ed. Chichester: John Wiley; 1999.

    Google Scholar 

  13. Hatakeyama T, Liu Z. Handbook of thermal analysis. Chichester: John Wiley; 1999.

    Google Scholar 

  14. Nguyen T, Zavarin E, Barrell II EM. Thermal analysis of lignocellulosic materials. Part I. Unmodified materials. J Macromol Sci Rev Macromol Chem. 1981;C20:1–65.

    Google Scholar 

  15. Hirose S, Hatakeyama H. A kinetic study on lignin pyloysis using integral method. Mokuzai Gakkishi. 1986;32:621–5.

    CAS  Google Scholar 

  16. Baumberger S, Dole P, Lapierre C. Using transgenic poplars to elcidate the relationship between the structure and the thermal properties of lingins. J Agric Food Chem. 2002;50:2450–3.

    Article  CAS  Google Scholar 

  17. Hirose S, Kobashigawa K, Izuta Y, Hatakeyama H. Thermal degradation of polyurethanes containing lignin studied by TG-FTIR. Polym Int. 1998;47:247–56.

    Article  CAS  Google Scholar 

  18. Goring DAI. Thermal softening of lignin, hemicellulose and cellulose. Pulp Paper Mag Can. 1963;64:T517–27.

    CAS  Google Scholar 

  19. Goring DAI. Polymer properties. In: Sarkanen KV, Ludwig CH, editors. Lignins. New York: Wiley Interscience; 1971. p. 695–768.

    Google Scholar 

  20. Ramiah VM, Goring DAI. The thermal expansion of cellulose, hemicellulose and lignin. J Polym Sci. 1965;C11:27–48.

    Google Scholar 

  21. Hatakeyama H, Kubota K, Nakano J. Thermal analysis of lignin by differential scanning calorimetry. Cell Chem Technol. 1972;6:521–9.

    CAS  Google Scholar 

  22. Hatakeyama T, Nakamura K, Hatakeyama H. Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer. 1982;23:1801–4.

    Article  CAS  Google Scholar 

  23. Hatakeyama H. Thermal analysis. In: Lin SY, Dence CW, editors. Methods in lignin chemistry. Berlin: Springer; 1992. p. 200–14.

    Chapter  Google Scholar 

  24. Salmén L. Viscoelastic properties of in situ lignin under water-saturated conditions. J Mater Sci. 1984;19:3090–6.

    Article  Google Scholar 

  25. Wunderlich B. Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Phys Chem. 1960;64:1052–6.

    Article  CAS  Google Scholar 

  26. Hatakeyama T, Hatakeyama H. Effect of chemical structure of amorphous polymers on heat capacity difference at glass transition temperature. Thermochim Acta. 1995;267:249–57.

    Article  CAS  Google Scholar 

  27. Marshall AS, Petrie SEB. Physical aging of glassy polymers: effects of subsidiary relaxation processes. In: Eby RH, editor. Durability of macromoelcular materials. ACS Symposium, Series 95, Washington DC, Am Chem Soc; 1979. p. 245–59.

  28. Hodge IM, Berens AR. Effects of annealing and prior history on enthalpy relaxation in galssy polymers. 2. Mathermatical modeling. Macromolecules. 1982;15:762–70.

    Article  CAS  Google Scholar 

  29. Åkernholm M, Salmén L. The oriented structure of lignin and its viscoelstic properties studied by static and dynamic FT-IR spectroscopy. Hotzhorshung. 2003;57:459–65.

    Google Scholar 

  30. Åkernholm M, Salmén L. Softening of wood polymers induced by moisture studied by dynamic FTIR spectroscopy. J Appl Polym Sci. 2004;94:2032–40.

    Article  Google Scholar 

  31. Hatakeyama T, Hirose S, Hatakeyama H. Differential scanning calorimetric studies on bound water in 1.4-dioxane acidolysis lignin. Thermochim Acta Makromol Chem. 1983;184:1265–74.

    Article  CAS  Google Scholar 

  32. Hatakeyama H, Hatakeyama T. Interaction between water and hydrophilic polymers. Thermochim Acta. 1998;308:3–22.

    Article  CAS  Google Scholar 

  33. Hatakeyama T, Kasuga H, Tanaka M, Hatakeyama H. Cold crystallization of poly(ethylene glycol)-water systems. Thermochim Acta. 2007;465:59–66.

    Article  Google Scholar 

  34. Tanaka M, Mochizuki A, Motomura T, Hatakeyama T. Study of blood compatibility with poly(2-methoyehtyl acrylate). Relationship between water structure and platelet compatibility in poly(methoxyethylacrylate-co-2- hydroxythylmethacrylate. Biomacromolecules. 2002;3:36–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hatakeyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatakeyama, H., Tsujimoto, Y., Zarubin, M.J. et al. Thermal decomposition and glass transition of industrial hydrolysis lignin. J Therm Anal Calorim 101, 289–295 (2010). https://doi.org/10.1007/s10973-010-0698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0698-8

Keywords

Navigation