Skip to main content
Log in

Insight on Structural Change in Sol–Gel-Derived Silica Gel with Aging under Basic Conditions for Mesopore Control

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Structural rearrangement of sol–gel-derived silica gel by aging under basic conditions was investigated using small angle X-ray scattering (SAXS) and 29Si nuclear magnetic resonance (NMR). A wet silica gel prepared under acidic conditions had a fractal nature, and many unreacted silanols remained on the surface. During aging of the gel in ammonia solution, additional Si—O—Si bonds rapidly formed, whereas the change in mesoscale structure gradually proceeded. This result was compared with that of simulation modeling the Ostwald ripening, i.e. dissolution from positive curvature and reprecipitation on negative curvature. In the simulation, structural change in a cluster from fractal nature to particle aggregates was well visualized in 2-dimmensional square lattice. Both scattering profiles calculated from the model clusters and the change in average coordination number of monomers in the cluster well agreed with the experimental SAXS and NMR results, respectively. This agreement strongly ensures us that structural change by aging under basic conditions proceeds through the Ostwald ripening. The mesopore size as well as mesopore volume in calcined silica gel is determined by the shrinkage degree during drying and calcination. The sample aged in basic solution restrains the shrinkage because of the growth of particulate structure, and retains large size and volume of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.G. Fahrenholtz, D.M. Smith, and D.W. Hua, J. Non-Cryst. Solids 144, 45 (1992).

    Google Scholar 

  2. W.G. Fahrenholtz and D.M. Smith, Mat. Res. Soc. Symp. Proc. 271, 705 (1992).

    Google Scholar 

  3. L. Chu, M.I.T.-Tejedor, and M.A. Anderson, Mat. Res. Soc. Symp. Proc. 346, 855 (1994).

    Google Scholar 

  4. Y. Lu, G.Z. Cao, P.P. Kale, L. Delattre, C.J. Brinker, and G.P. Lopez, Mat. Res. Soc. Symp. Proc. 435, 271 (1996).

    Google Scholar 

  5. M. Toba, S. Niwa, K. Shimizu, and F. Mizukami, Nippon Kagaku Kaishi 1989, 1523 (1989).

    Google Scholar 

  6. M. Toba, F. Mizukami, S. Niwa, and K. Maeda, J. Chem. Soc., Chem. Commun. 1990, 1211 (1990).

    Google Scholar 

  7. T. Yazawa, A. Miyake, and H. Tanaka, J. Ceram. Soc. Japan 99, 1094 (1991).

    Google Scholar 

  8. R. Takahashi, S. Sato, T. Sodesawa, M. Suzuki, and K. Ogura, Bull. Chem. Soc. Jpn. 73, 765 (2000).

    Google Scholar 

  9. H. Izutsu, F. Mizukami, T. Sashida, K. Maeda, Y. Koizumi, and Y. Akiyama, J. Non-Cryst. Solids 212, 40 (1997).

    Google Scholar 

  10. R. Takahashi, S. Sato, T. Sodesawa, and M. Kawakita, Chem. Lett. 1999, 1107 (1999).

    Google Scholar 

  11. R. Takahashi, S. Sato, T. Sodesawa, M. Kawakita, and K. Ogura, J. Phys. Chem. B 104, 12184 (2000).

    Google Scholar 

  12. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  13. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).

    Google Scholar 

  14. S. Inagaki, Y. Fukushima, and K. Kuroda, J. Chem. Soc., Chem. Commun. 1993, 680 (1993).

    Google Scholar 

  15. S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, and K. Kuroda, Bull. Chem. Soc. Jpn. 69, 1449 (1996).

    Google Scholar 

  16. P. Yang, D. Zhao, D. Margolese, B. Chmelka, and G. Stucky, Nature 396, 152 (1998).

    Article  CAS  Google Scholar 

  17. H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, Anal. Chem. 68, 3498 (1996).

    Google Scholar 

  18. K. Nakanishi, J. Porous Mater. 4, 67 (1997).

    Google Scholar 

  19. K. Nakanishi, R. Takahashi, T. Nagakane, K. Kitayama, N. Koheya, H. Shikata, and N. Soga, J. Sol–Gel Sci. Technol. 17, 191 (2000).

    Google Scholar 

  20. K. Nakanishi, H. Shikata, N. Ishizuka, N. Koheya, and N. Soga, J. High Res. Chromatogra. 23, 106 (2000).

    Google Scholar 

  21. R. Takahashi, S. Sato, T. Sodesawa, N. Nakamura, S. Tomiyama, T. Kosugi, and S. Yoshida, J. Nanosci. Nanotechnol. 1, 169 (2001).

    Google Scholar 

  22. S. Tomiyama, R. Takahashi, S. Sato, T. Sodesawa, and S. Yoshida, Appl. Catal. A General 241, 349 (2003).

    Google Scholar 

  23. R. Takahashi, K. Nakanishi, and N. Soga, Faraday Discuss. 101, 249 (1995).

    Google Scholar 

  24. C. Brinker and J. Scherer, Sol–gel Science, The Physics and Chemistry of Sol–Gel Processing (Academic Press, New York, 1990) Chap. 3 and 5.

  25. R. Takahashi, K. Nakanishi, and N. Soga, J. Sol–Gel Sci. Technol. 17, 7 (2000).

    Google Scholar 

  26. R. Takahashi, K. Nakanishi, and N. Soga, J. Non-Cryst. Solids 189, 66 (1995).

    Google Scholar 

  27. R. Takahashi, S. Takenaka, S. Sato, T. Sodesawa, K. Ogura, and K. Nakanishi, J. Chem. Soc., Faraday Trans. 94, 3161 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, R., Nakanishi, K. & Soga, N. Insight on Structural Change in Sol–Gel-Derived Silica Gel with Aging under Basic Conditions for Mesopore Control. J Sol-Gel Sci Technol 33, 159–167 (2005). https://doi.org/10.1007/s10971-005-5610-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-5610-9

Keywords

Navigation