Skip to main content
Log in

Effect of nitrate on the determination of iron concentration in phytoplankton culture medium by liquid scintillation counting (LSC) method using 55Fe as radioisotope tracer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Liquid scintillation counting (LSC) method using a radioisotope tracer has several advantages such as simple procedure, high sensitivity and low detection limit, and has been used for the determination Fe concentrations in water samples. Several factors such as nitrate concentration, pH, chelating ligand affect the efficiency of this method in the determination of iron (Fe) in waters. In this study, the effect of nitrate in phytoplankton culture medium on the determination of Fe concentration by LSC method using 55Fe radioisotope tracer was evaluated. The measured Fe concentrations in the medium were lower than its added concentration (1.5 μM) when liquid samples contain nitrate. Fe concentrations decreased exponentially as nitrate concentrations increased up to 2.64 mM, reaching a constant value of 1.31 μM Fe at nitrate concentrations higher than 2.64 mM. A correction factor (f = 1.14) was calculated from the decrease rate of Fe concentrations at different nitrate concentrations in the phytoplankton culture medium. This correction factor can be used to correct the measurement values of Fe concentrations in phytoplankton culture medium obtained from LSC method. Our results showed that up to 94 % of the added Fe can be determined by LSC using 55Fe radioisotope tracer. The remaining 6 % was probably bound to the walls of the culturing vessel. This method is also applicable for the measurement of Fe size-fractionation in phytoplankton culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geider R, Roche J (1994) Photosynth Res 39:275–301

    Article  CAS  Google Scholar 

  2. Sunda WG, Swift DG, Huntsman SA (1991) Nature 351:55–57

    Article  CAS  Google Scholar 

  3. Sunda WG, Huntsman SA (1997) Nature 390:389–392

    Article  CAS  Google Scholar 

  4. Maldonado MT, Price NM (2000) Limnol Oceanogr 45(4):814–826

    Article  CAS  Google Scholar 

  5. Taylor SR (1964) Geochim Cosmochim Acta 28:1273–1285

    Article  CAS  Google Scholar 

  6. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley-Interscience, New York

    Google Scholar 

  7. Kuma K, Nishioka J, Matsunaga K (1996) Limnol Oceanogr 41:396–407

    Article  CAS  Google Scholar 

  8. Liu X, Millero FJ (2002) Mar Chem 77:43–54

    Article  CAS  Google Scholar 

  9. Johnson KS, Gordon RM, Coale KH (1997) Mar Chem 57:137–161

    Article  CAS  Google Scholar 

  10. Lewin J, Chen C (1973) Limnol Oceanogr 18:590–596

    Article  CAS  Google Scholar 

  11. Nishioka J, Takeda S (2000) Mar Biol 137:231–238

    Article  CAS  Google Scholar 

  12. Kuma K, Katsumoto A, Shiga N, Sawabe T, Matsunaga K (2000) Mar Chem 71:111–123

    Article  CAS  Google Scholar 

  13. King JN, Fritz JS (1985) Anal Chem 57:1016–1020

    Article  CAS  Google Scholar 

  14. Van Geen A, Boyle E (1990) Anal Chem 62:1705–1709

    Article  Google Scholar 

  15. Sohrin Y, Iwamoto S-i, Akiyama S, Fujita T, Kugii T, Obata H, Nakayama E, Goda S, Fujishima Y, Hasegawa H, Ueda K, Matsui M (1998) Anal Chim Acta 363:11–19

    Article  CAS  Google Scholar 

  16. Wells ML, Bruland KW (1998) Mar Chem 63:145–153

    Article  CAS  Google Scholar 

  17. Gobler CJ, Donat JR, Consolvo JA III, Sañudo-Wilhelmy SA (2002) Mar Chem 77:71–89

    Article  CAS  Google Scholar 

  18. Akatsuka K, McLaren JW, Lam JW, Berman SS (1992) J Anal At Spectrom 7:889–894

    Article  CAS  Google Scholar 

  19. van den Berg CMG (1995) Mar Chem 50:139–157

    Article  Google Scholar 

  20. Wu J, Luther GW (1995) Mar Chem 50:159–177

    Article  CAS  Google Scholar 

  21. Rue EL, Bruland KW (1997) Limnol Oceanogr 42:901–910

    Article  CAS  Google Scholar 

  22. Bruland KW, Rue EL, Smith GJ (2001) Limnol Oceanogr 46:1661–1674

    Article  CAS  Google Scholar 

  23. Hudson RJM, Morel FMM (1989) Limnol Oceanogr 34:1113–1120

    Article  CAS  Google Scholar 

  24. Hudson RJM, Morel FMM (1990) Limnol Oceanogr 35:1002–1020

    Article  CAS  Google Scholar 

  25. Shaked Y, Kustka AB, Morel FMM, Erel Y (2004) Limnol Oceanogr Methods 2:137–145

    Article  Google Scholar 

  26. Grahek Ž, Rožmarić MM (2005) J Radioanal Nucl Chem 267:131–137

    Article  Google Scholar 

  27. Lyman J, Fleming RH (1940) J Mar Res 3:134–146

    CAS  Google Scholar 

  28. Watanabe MM, Kawachi M, Hiroki M, Kasai F (2000) NIES collection list of strains: microalgae and protozoa. National Institute for Environmental Studies, Tsukuba, p 159

    Google Scholar 

  29. Malonda AG (1999) Free parameter models in liquid scintillation counting. CIEMAT, Madrid, p 416

    Google Scholar 

  30. Kuma K, Nakabayashi S, Suzuki Y, Matsunaga K (1992) Mar Chem 38:133–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by a Grant-in-Aid for Scientific Research (18510071) from Japan Society for the Promotion of Science (JSPS) and the Steel Industry Foundation for the Advancement of Environmental Protection Technology, Japan. The authors also wish to thank the University of Technology, Sydney (UTS), Australia, for supporting the research. We also would like to thank Dr. Anne Colville, School of Environmental Sciences, University of Technology Sydney (UTS), Australia, for reviewing the manuscript and making a number of helpful suggestions prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okumura, C., Rahman, M.A., Takimoto, A. et al. Effect of nitrate on the determination of iron concentration in phytoplankton culture medium by liquid scintillation counting (LSC) method using 55Fe as radioisotope tracer. J Radioanal Nucl Chem 296, 1295–1302 (2013). https://doi.org/10.1007/s10967-012-2327-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2327-4

Keywords

Navigation