Skip to main content
Log in

Toxic element composition of multani mitti clay for nutritional safety

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Geophagy of multani mitti (MM) clay is very common in central Pakistan especially amongst women. It was therefore mandatory to establish baseline levels of toxic elements in this clay for its safe dietary consumption by consumers of different genders, age groups and physical states. Instrumental neutron activation analysis and atomic absorption spectrometry techniques were used to determine the nutritional safety of MM clay for oral intake. All quantified toxic elements were detected at trace levels with composition in the descending order; Pb > Br > As > Sb > Hg > Cd. Comparison of these elements in MM clay with other clays shows that As, Cd, and Pb, are lowest in MM clay while its Br and Hg contents are high. Highest weekly dietary intakes of As, Br, Cd, Hg, and Sb were found to be 18, 0.05, 1.6, 9.2 and 1.1 % of the respective recommended provisional tolerable weekly intakes. The findings of this study show that As, Br, Cd, Hg and Sb in MM clay are well below the tolerance levels. However its Pb concentration is very high and may pose health concerns. The data presented in this study can be used as national base level guideline for geophagy of MM clay by men, women (normal, pregnant and lactating) and children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bergaya F, Theng BKG, Lagaly G (2006) Development in clay science. In: Handbook of clay science, vol 1, Chapt. 11.5. Elsevier publications, Amsterdam, p 717

  2. Finkelman RB (2006) Int J Environ Res Public Health 3:338

    Article  CAS  Google Scholar 

  3. Mascolo N, Summa V, Tateo F (1999) Appl Clay Sci 15:491

    Article  CAS  Google Scholar 

  4. Quig D (1998) Altern Med Rev 3:262

    CAS  Google Scholar 

  5. Flora SJS, Mehta MM (2008) Ind J Med Res 128:221

    Google Scholar 

  6. Njinga RL, Alf B, Sunday O, Muhammad TA (2011) Adv Appl Sci Res 2:370

    CAS  Google Scholar 

  7. Wasim M (2010) J Radioanal Nucl Chem 285:337

    Article  CAS  Google Scholar 

  8. Sastre J, Sahuquillo A, Vidal M, Rauret G (2002) Anal Chim Acta 462:59

    Article  CAS  Google Scholar 

  9. Waheed S, Zaidi JH, Ahmad S (2003) J Radioanal Nucl Chem 258:73

    Article  CAS  Google Scholar 

  10. Waheed S, Ahmad S, Zaidi JH, Rahman A, Qureshi IH, Saleem M (2001) Radiochim Acta 89:425

    Article  CAS  Google Scholar 

  11. Kane JS (2001) Geostand Newslett 25:7

    Article  CAS  Google Scholar 

  12. Pszonicki L, Hanna AN, Suschny O (1984) Report on the intercomaprison run soil-7. Report No. 49: IAEA/Rl/112, IAEA, Vienna

  13. Mee LD, Oregioni B (1991) IAEA/MEL, World-wide Intercomparison of trace element measurements in marine sediments SD-M-2/TM. Report No. 49: IAEA/AL/053, IAEA, Vienna

  14. Silva PSC, Oliveira SMB, Farias L, Fávaro DIT, Mazzilli BP (2011) Appl Clay Sci 52:145

    Article  CAS  Google Scholar 

  15. Kogel JE, Lewis SA (2001) Clays Clay Min 49:387

    Article  CAS  Google Scholar 

  16. International Atomic Energy Agency (2003) Nuclear analytical techniques in archaeological investigations. International Atomic Energy Agency, Vienna Technical Reports Series, No. 416: ISSN 0074–1914

  17. Vallius H (2007) Geol Surv Finl 45:63

    Google Scholar 

  18. Food Standard Agency (2009) Food survey information sheet 01/09

  19. Al-Rmalli SW, Jenkins RO, Watts MJ, Haris PI (2010) Environ Health 9:79

    Article  CAS  Google Scholar 

  20. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) J Appl Toxicol 2011(31):95–107

    Google Scholar 

  21. Kapaj S, Peterson A, Liber A, hattacharya P (2006) J Environ Sci Health A 41:2399

    CAS  Google Scholar 

  22. Zhang HH, Yuan HX, Hu YG, Wu ZF, Zhu LA, Zhu L, Li FB, LI DQ (2006) China Environ Pollut 144:492–499

    Article  CAS  Google Scholar 

  23. Waheed S, Rahman S, Gill KP (2009) J Radioanal Nucl Chem 279:725

    Article  CAS  Google Scholar 

  24. Pavelka S (2004) Physiol Res 53:S81

    CAS  Google Scholar 

  25. Subramanian KS, Iyengar GV, Okamoto K (eds) (1991) Biological trace element research: multidisciplinary perspectives, ACS Symposium Series. American Chemical Society, Washington DC

  26. Godt J, Scheidig F, Siestrup CG, Brandenburg VPE, Reich A, Groneber DA (2006) J Occup Med Toxicol 1:22

    Article  Google Scholar 

  27. Khansakorn N, Wongwit W, Tharnpoophasiam P, Hengprasith B, Suwannathon L, Chanprasertyothin S, Sura T, Kaojarern S, Sritara P (2012) J Toxicol. doi:10.1155/2012/356126

  28. Center for Disease Control and Prevention (2001) MMWR 50(08): 140–143

  29. Lopes CB, Coimbra J, Otero M, Pereira E, Duarte AC, Lin Z, Rocha J (2008) Quím Nova 31:321

    Article  CAS  Google Scholar 

  30. Samlafo BV, Aidoo A, Sarsah JBK, Quarshie LA, Serfor-Armah YE (2011) J Environ Earth Sci 3:541

    CAS  Google Scholar 

  31. Nayak D, Lahiri S (2002) J Radioanal Nucl Chem 254:619–623

    Article  CAS  Google Scholar 

  32. World Health Organization (2011) Brief guide to analytical methods for measuring lead in paint, the inter-organization programme for the sound management of chemicals (IOMC) World Health Organization NLM classification: QV 292

  33. Ambrose MT, Al-Lozi M, Scott MG (2000) Clin Chem 46:1171

    CAS  Google Scholar 

  34. Ljung K, Palm B, Grandér M, Vahter M (2011) Food Chem 127:943

    Article  CAS  Google Scholar 

  35. WHO Technical Report Series 960 (2011) Evaluation of certain food additives and contaminants, seventy-third report of the Joint FAO/WHO expert committee on food additives, food and agriculture organization of the United Nations

  36. Cooper RG, Harrison AP (2009) Ind J Occup Environ Med 13:3

    Article  Google Scholar 

  37. World Health Organization (2003) Antimony in drinking-water, background document for development of WHO guidelines for drinking-water quality (GDWQ). World Health Organization WHO/SDE/WSH/03.04/74

  38. Toghill KE, Lu M, Compton RG (2011) Int J Electrochem Sci 6:3057

    CAS  Google Scholar 

  39. Office of Pollution Prevention (2002) Fact sheet, persistent, bioaccumulative and toxic chemical, antimony and antimony compounds, vol 102. Office of Pollution Prevention, Columbus

  40. Corte FD, Simonits A, Wispelaere AD, Hoste J, Moens L, Demeter AA (1986) Compilation of K0, Au-factors and related nuclear data for 112 radionuclides of interest in NAA, INW/KFKI interim report

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Waheed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waheed, S., Faiz, Y., Rahman, S. et al. Toxic element composition of multani mitti clay for nutritional safety. J Radioanal Nucl Chem 295, 143–150 (2013). https://doi.org/10.1007/s10967-012-1876-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1876-x

Keywords

Navigation