Skip to main content
Log in

Subgroups of SLn over a semilocal ring

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In the present paper, it is proved that if R is a commutative semilocal ring all the residue fields of which contain at least 3n + 2 elements, then for every subgroup H of the special linear group SL(n, R), n ≥ 3, containing the diagonal subgroup SD(n, R) there exists a unique D-net σ of ideals of R such that Γ(σ)≤H≤NΓ(σ). In works by Z. I. Borewicz and the author, similar results were established for GL n over semilocal rings and for SL n over fields. Later I. Hamdan obtained a similar description for the very special case of uniserial rings. Bibliography: 76 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. I. Borewicz, “On parabolic subgroups in linear groups over a semilocal ring,” Vestn. LGU, Ser. 1, No. 13, 16–24 (1976).

  2. Z. I. Borewicz, “On parabolic subgroups in the special linear group over a semilocal ring,” Vestn. LGU, Ser. 1, No. 19, 29–34 (1976).

    Google Scholar 

  3. Z. I. Borewicz, “A description of subgroups of the general linear group that contain the group of diagonal matrices,” Zap. Nauchn. Semin. LOMI, 64, 12–29 (1976).

    MATH  Google Scholar 

  4. Z. I. Borewicz and N. A. Vavilov, “The subgroups of the general linear group over a semilocal ring that contain the group of diagonal matrices,” Tr. Steklov Mat. Inst. AN SSSR, 148, 43–57 (1978).

    Google Scholar 

  5. Z. I. Borewicz and N. A. Vavilov, “On the definition of a net subgroup,” Zap. Nauchn. Semin. LOMI, 132, 26–33 (1983).

    Google Scholar 

  6. Z. I. Borewicz and J. O. Lesama-Serrano, “The group of invertible elements of a semiperfect ring,” in: Rings and Modules. Limit Theorems in Probability Theory, Vol. 1, Leningrad (1986), pp. 14–67.

    Google Scholar 

  7. Bui Xuan Hai, “Arrangement of subgroup in the special linear group over a skew field with an infinite center,” Zap. Nauchn. Semin. LOMI, 175, 5–11 (1989).

    Google Scholar 

  8. Bui Xuan Hai, “The subgroups of the special linear group over a skew field that contain the group of diagonal matrices,” Zap. Nauchn. Semin. LOMI, 211, 91–103 (1994).

    Google Scholar 

  9. N. A. Vavilov, “On the subgroups of the general linear group over a semilocal ring that contain the group of diagonal matrices,” Vestn. LGU, No. 1, 10–15 (1981).

    Google Scholar 

  10. N. A. Vavilov, “The Bruhat decomposition for subgroups that contain the group of diagonal matrices. I, II,” Zap. Nauchn. Semin. LOMI, 103, 20–30 (1980); 114, 50–61 (1982).

    MathSciNet  MATH  Google Scholar 

  11. N. A. Vavilov, “On subgroups of the special linear group that contain the group of diagonal matrices. I–V,” Vestn. LGU, Ser. I, No. 4, 3–7 (1985); No. 2, 10–15 (1986); No. 2, 3–8 (1987); No. 3, 10–15 (1988); No. 2, 10–15 (1993).

  12. N. A. Vavilov, “The Bruhat decomposition of one-dimensional transformations,” Vestn. LGU, Ser. I, No. 3, 14–20 (1986).

  13. N. A. Vavilov, Subgroups of split classical groups, Doctoral Thesis, Leningrad State University (1987).

  14. N. A. Vavilov, “On subgroups of split orthogonal groups. I, II,” Sib. Mat. Zh., 29,No. 3, 12–25 (1988); Zap. Nauchn. Semin. POMI, 265, 42–63 (1999).

    MATH  MathSciNet  Google Scholar 

  15. N. A. Vavilov, “Subgroups of split classical groups,” Tr. Steklov Mat. Inst. AN SSSR, 183, 29–41 (1990).

    MATH  MathSciNet  Google Scholar 

  16. N. A. Vavilov, “Subgroups of Chevalley groups that contain a maximal torus,” Tr. Leningr. Mat. Obshch., 1, 64–109 (1990).

    MathSciNet  MATH  Google Scholar 

  17. N. A. Vavilov, “On subgroups of the spinor group that contain a split maximal torus. I, II,” Zap. Nauchn. Semin. LOMI, 191, 49–75 (1991); 289, 37–56 (2002).

    Google Scholar 

  18. N. A. Vavilov, “Unipotent elements in the subgroups of extend Chevalley groups that contain a split maximal torus,” Dokl. RAN, 328,No. 5, 536–539 (1993).

    MathSciNet  Google Scholar 

  19. N. A. Vavilov and E. V. Dybkova, “Subgroups of general symplectic group that contain the group of diagonal matrices. I, II,” Zap. Nauchn. Semin. LOMI, 103, 31–47 (1980); 132, 44–56 (1983).

    MathSciNet  MATH  Google Scholar 

  20. N. A. Vavilov and M. Yu. Mitrofanov, “Intersections of two Bruhat cells,” Dokl. RAN, 377,No. 1, 7–10 (2001).

    MathSciNet  Google Scholar 

  21. N. A. Vavilov and A. A. Semenov, “Long root semisimple elements in Chevalley groups,” Dokl. RAN, 338,No. 6, 725–727 (1994).

    Google Scholar 

  22. N. A. Vavilov and V. A. Petrov, “On overgroups of Ep(2l, R),” Algebra Analiz, 15,No. 4, 72–114 (2003).

    MathSciNet  Google Scholar 

  23. N. A. Vavilov and I. Khamdan, “On subgroups of the general linear group over a local field,” Izv. Vuzov, Matematika, 12, 8–15 (1989).

    MathSciNet  Google Scholar 

  24. W. Hołubowski, “Subgroups of an isotropic orthogonal group that contain the centralizer of a maximal torus,” Zap. Nauchn. Semin. POMI, 191, 76–79 (1991).

    Google Scholar 

  25. W. Hołubowski, “The structure of isotropic orthogonal groups,” Ph.D. Thesis, St.Petersburg State University (1991).

  26. E. V. Dybkova, “On net subgroups of hyperbolic unitary groups,” Algebra Analiz, 9,No. 4, 87–96 (1997).

    Google Scholar 

  27. E. V. Dybkova, “Overdiagonal subgroups of a hyperbolic unitary group for a good form ring over a field,” Zap. Nauchn. Semin. POMI, 236, 87–96 (1997).

    Google Scholar 

  28. E. V. Dybkova, “On the conjugacy of net subgroups in a hyperbolic unitary group over a field,” Vestn. SPbGU, Ser. 1, No. 1, 8–11 (1997).

  29. E. V. Dybkova, “Form nets and the lattice of overdiagonal subgroups in the symplectic group over a field of characteristic 2,” Algebra Analiz, 10,No. 4, 113–129 (1998).

    MathSciNet  Google Scholar 

  30. E. V. Dybkova, “On overdiagonal subgroups of a hyperbolic unitary group over a noncommutative skew field,” Zap. Nauchn. Semin. POMI, 289, 154–206 (2002).

    Google Scholar 

  31. E. V. Dybkova, xxx“Overdiagonal subgroups of a hyperbolic unitary group for a good form ring over a noncommutative skew field,” Zap. Nauchn. Semin. POMI, 305, 121–135 (2003).

    Google Scholar 

  32. E. V. Dybkova, “The Borewicz theorem for a hyperbolic unitary group over a noncommutative skew field,” Zap. Nauchn. Semin. POMI, 321, 136–167 (2005).

    MATH  Google Scholar 

  33. E. V. Dybkova, “Subgroups of hyperbolic unitary groups,” Doctoral Thesis, St.Petersburg State Univ. (2006).

  34. A. E. Egorov and A. A. Panin, “The conjugacy theorem for subgroups of SLn that contain the group of diagonal matrices,” Zap. Nauchn. Semin. POMI, 272, 177–185 (2000).

    Google Scholar 

  35. A. E. Zalesskii, “Linear groups,” Usp. Mat. Nauk, 36,No. 6, 57–107 (1981).

    MathSciNet  Google Scholar 

  36. A. E. Zalesskii, “Linear groups,” in: Scientific Reviews. Algebra, Topology, Geometry, VINITI, Moscow (1983), pp. 135–182.

    Google Scholar 

  37. A. E. Zalesskii, “Linear groups,” in: Scientific Reviews. Fundamental Directions. Algebra, VINITI, Moscow (1989), pp. 114–228.

    Google Scholar 

  38. V. A. Koibaev, “Subgroups in GL(2, K) that contain a nonsplit maximal torus,” Zap. Nauchn. Semin. POMI, 211, 136–145 (1994).

    Google Scholar 

  39. A. S. Kondratiev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41,No. 1, 57–96 (1986).

    Google Scholar 

  40. K. Yu. Lavrov, “Subgroups of the general linear group over a local field,” Zap. Nauchn. Semin. POMI, 272, 242–258 (2000).

    Google Scholar 

  41. K. Yu. Lavrov, “Subgroups of orthogonal groups of even order over a local field,” Zap. Nauchn. Semin. POMI, 321, 240–250 (2005).

    MATH  Google Scholar 

  42. M. Yu. Mitrofanov, “Matroids describing Bruhat cells,” Zap. Nauchn. Semin. POMI, 319, 244–260 (2004).

    MATH  Google Scholar 

  43. A. A. Panin, “Galois theory for a class of complete Dedekind structures,” Zap. Nauchn. Semin. POMI, 236, 129–132 (1997).

    Google Scholar 

  44. A. A. Panin and A. V. Yakovlev, “Galois theory for a class of Dedekind structures,” Zap. Nauchn. Semin. POMI, 236, 133–148 (1997).

    Google Scholar 

  45. V. A. Petrov, “Odd unitary groups,” Zap. Nauchn. Semin. POMI, 305, 195–225 (2003).

    Google Scholar 

  46. A. Z. Simonyan, “Galois theory for modular lattices,” Ph.D. Thesis, St.Petersburg State University (1992).

  47. E. A. Sopkina, “A classification of group subschemes of GLn that contain a split maximal torus,” Zap. Nauchn. Semin. POMI, 321, 281–296 (2005).

    MATH  Google Scholar 

  48. E. A. Sopkina, “Group subschemes of reductive groups,” Ph.D. Thesis, St.Petersburg State University (2006).

  49. E. A. Filippova, “Subgroups of the spinor group that contain a split maximal torus. III,” Zap. Nauchn. Semin. POMI, 289, 287–299 (2002).

    Google Scholar 

  50. I. Khamdan, “Subgroups of the general linear group over a local field,” Ph.D. Thesis, Leningrad State University (1987).

  51. I. Khamdan, “Subgroups of the special linear group of a local ring of principal ideals,” in: Rings and Linear Groups, Krasnodar (1988), pp. 119–126.

  52. A. Bak and N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7,No. 2, 159–196 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  53. Bui Xuan Hai, “On subgroups in the special linear group over a division algebra that contain a subgroup of diagonal matrices,” J. Pure Appl. Algebra, 121,No. 1, 53–67 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  54. A. M. Cohen, H. Cuypers, and H. Sterk, “Linear groups generated by reflection tori,” Canad. J. Math., 51,No. 6, 1149–1174 (1999).

    MATH  MathSciNet  Google Scholar 

  55. D. Costa and G. Keller, “Radix redux: normal subgroups of symplectic group,” J. Reine Angew. Math., 427, 51–105 (1992).

    MATH  MathSciNet  Google Scholar 

  56. A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin et al. (1989).

    MATH  Google Scholar 

  57. A. L. Harebov and N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus,” Comm. Algebra, 24,No. 1, 109–133 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  58. O. H. King, “On subgroups of the special linear group containing the special orthogonal group,” J. Algebra, 96,No. 1, 178–193 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  59. O. H. King, “On subgroups of the special linear group containing the diagonal subgroup,” J. Algebra, 132,No. 1, 198–204 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  60. O. H. King, “The subgroup structure of classical groups,” Contemp. Math., 131,No. 1, 209–215 (1992).

    Google Scholar 

  61. O. H. King, “Subgroups of the special linear group, containing the groups of diagonal matrices,” Preprint Univ. Newcastle u.T. (2005).

  62. Li Shang Zhi, “The maximality of monomial subgroups of linear groups over division rings,” J. Algebra, 127,No. 1, 22–39 (1989).

    Article  MathSciNet  Google Scholar 

  63. M. Yu. Mitrofanov and N. A. Vavilov, “Overgroups of the diagonal subgroup via small Bruhat cells,” Algebra Colloq. (to appear).

  64. V. A. Petrov, “Overgroups of unitary groups,” K-Theory, 29, 77–108 (2003).

    Article  Google Scholar 

  65. V. P. Platonov, “Subgroups of an algebraic group over a local or global field containing a maximal torus,” C. R. Acad. Sci. Paris, Sér. Math., 318,No. 10, 899–903 (1994).

    MATH  MathSciNet  Google Scholar 

  66. G. M. Seitz, “Subgroups of finite groups of Lie type,” J. Algebra, 61,No. 1, 16–27 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  67. G. M. Seitz, “On the subgroup structure of classical groups,” Commun. Algebra, 10,No. 8, 875–885 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  68. G. M. Seitz, “Root subgroups for maximal tori in finite groups of Lie type,” Pacif. J. Math., 106,No. 1, 153–244 (1983).

    MATH  MathSciNet  Google Scholar 

  69. E. A. Sopkina, “Classification of all connected subgroup schemes of a reductive group containing a split maximal torus,” Preprint POMI 05/2006 (2006).

  70. E. A. Sopkina, “Subgroup schemes of a reductive group containing a split maximal torus,” Preprint POMI 10/2006 (2006).

  71. N. A. Vavilov, “Subgroups of split orthogonal groups in even dimensions,” Bull. Acad. Polon. Sci., Ser. Sci. Math., 29,No. 9–10, 425–429 (1981).

    MATH  MathSciNet  Google Scholar 

  72. N. A. Vavilov, “A conjugacy theorem for subgroups of GLn containing the group of diagonal matrices,” Colloq. Math., 54,No. 1, 9–14 (1987).

    MATH  MathSciNet  Google Scholar 

  73. N. A. Vavilov, “Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como — 1993), Cambridge Univ. Press (1995), pp. 233–280.

  74. N. A. Vavilov, “Unipotent elements in subgroups which contain a split maximal torus,” J. Algebra, 176, 356–367 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  75. N. A. Vavilov, “Geometry of 1-tori in GLn,” Preprint Univ. Bielefeld, No. 8 (1995).

  76. N. A. Vavilov, “Subgroups of SLn over a semilocal ring,” Preprint Univ. Bielefeld, No. 111 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vavilov.

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 343, 2007, pp. 33–53.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavilov, N.A. Subgroups of SLn over a semilocal ring. J Math Sci 147, 6995–7004 (2007). https://doi.org/10.1007/s10958-007-0525-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0525-3

Keywords

Navigation