Skip to main content
Log in

Split Monotone Variational Inclusions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Based on the very recent work by Censor-Gibali-Reich (http://arxiv.org/abs/1009.3780), we propose an extension of their new variational problem (Split Variational Inequality Problem) to monotone variational inclusions. Relying on the Krasnosel’skii-Mann Theorem for averaged operators, we analyze an algorithm for solving new split monotone inclusions under weaker conditions. Our weak convergence results improve and develop previously discussed Split Variational Inequality Problems, feasibility problems and related problems and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Censor, Y., Gibali, A., Reich, S.: The split variational inequality problem. The Technion-Israel Institute of Technology, Haifa (2010). arXiv:1009.3780

  2. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  3. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  5. Goldstein, E., Tretyakov, N.: Modified Lagrangians and Monotone Maps in Optimization. Wiley, New York (1996)

    Google Scholar 

  6. Byrne, C.: A unified treatment for some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baillon, J.-B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4, 1–9 (1978)

    MathSciNet  Google Scholar 

  8. Aoyama, K., Kimura, Y., Takahashi, W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15(2), 395–409 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Rockafellar, R.T.: Monotone operators associated with saddle functions and minimax problems. Nonlinear analysis, Part I. In: Browder, F.E. (ed.) Symposia in Pure Mathematics, vol. 18, pp. 397–407. AMS, Providence (1970)

    Google Scholar 

  10. Masad, E., Reich, S.: A note on the multiple-set split feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Reich, S.: Averaged mappings in Hilbert ball. J. Math. Anal. Appl. 109, 199–206 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lopez, G., Martin-Marquez, V., Xu, H.-K.: Iterative algorithms for the multi-sets feasibility problem. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, pp. 243–279. Medical Physics Publishing, Madison (2010)

    Google Scholar 

  13. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)

    MATH  MathSciNet  Google Scholar 

  14. Mann, W.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MATH  Google Scholar 

  15. Moudafi, A.: The split common fixed-point problem for demicontractive mappings. Inverse Probl. 26, 1–6 (2010)

    Article  MathSciNet  Google Scholar 

  16. Xu, H.K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  17. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Bauschke, H.H., Combettes, P.: A weak-to-strong convergence principle for Fejér monotone methods in Hilbert spaces. Math. Methods Oper. Res. 26, 248–264 (2001)

    MATH  MathSciNet  Google Scholar 

  19. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moudafi.

Additional information

Communicated by M. Théra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moudafi, A. Split Monotone Variational Inclusions. J Optim Theory Appl 150, 275–283 (2011). https://doi.org/10.1007/s10957-011-9814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9814-6

Keywords

Navigation