Skip to main content
Log in

Mathematics of Granular Materials

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This is a short and somewhat informal review on the most mathematical parts of the kinetic theory of granular media, intended for physicists and for mathematicians outside the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4):327–355 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Baldassari, U. Marini Bettolo Marconi, and A. Puglisi, Influence of correlations on the velocity statistics of scalar granular gases. Europhys. Lett. 58(1): 14–20 (2002).

    Article  ADS  Google Scholar 

  3. A. Barrat, E. Trizac, and M. Ernst, Granular gases: Dynamics and collective effects. To appear in Journal of Physics C: Condensed Matter. 17: S2429–S2437 (2005).

  4. E. Ben-Naïm and P. Krapivsky, Multiscaling in inelastic collisions. Phys. Rev. E 61:R5–R8 (2000).

    Google Scholar 

  5. E. Ben-Naïm and P. Krapivsky, The inelastic Maxwell model. In Granular Gas Dynamics, T. Poeschel and N. Brilliantov, Eds., vol. 624 of Lect. Notes Phys. Springer-Verlag, Berlin, 2003. cond-mat/0301238.

  6. D. Benedetto, E. Caglioti, J. A. Carrillo, and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91(5–6):979–990 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Benedetto, E. Caglioti, and M. Pulvirenti, A kinetic equation for granular media. RAIRO Model. Math. Anal. Numér. 31(5):615–641 (1997). Erratum in M2AN Math. Model. Numer. Anal. 33(2):439–441 (1999).

  8. D. Benedetto and M. Pulvirenti, On the one-dimensional Boltzmann equation for granular flows. M2AN Math. Model. Numer. Anal. 35(5):899–905 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Bisi, J. Carrillo, and G. Toscani, Contractive metrics for a Boltzmann equation for granular gases: Diffusive equilibria. J. Statist. Phys. 118:301–331 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Bisi, G. Spiga, and G. Toscani, Grad's equations and hydrodynamics for weakly inelastic granular flows. Phys. Fluids 16(12):4235–4247 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Bizon, M. Shattuck, J. Swift, and H. Swinney, Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60:4340–4351 (1999).

    Article  ADS  Google Scholar 

  12. A. V. Bobylev, J. A. Carrillo, and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys. 98(3–4):743–773 (2000). Erratum in: J. Statist. Phys. 103(5–6):1137–1138 (2001).

    Google Scholar 

  13. A. V. Bobylev and C. Cercignani, Moment equations for a granular material in a thermal bath. J. Statist. Phys. 106(3–4):547–567 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. V. Bobylev and C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Statist. Phys. 110(1–2):333–375 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. V. Bobylev, C. Cercignani, and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Statist. Phys. 111(1–2):403–417 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: exact solutions and power like tails. J. Statist. Phys. this issue.

  17. A. V. Bobylev, I. M. Gamba, and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Statist. Phys. 116(5–6):1651–1682 (2004).

    Article  MathSciNet  Google Scholar 

  18. N. Brilliantov and T. Pöschel, Kinetic theory of granular gases. Oxford Graduate Texts. Oxford University Press, 2004.

  19. E. Caglioti and C. Villani, Homogeneous cooling states are not always good approximations to granular flows. Arch. Ration. Mech. Anal. 163(4):329–343 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations. In Handbook of mathematical fluid dynamics. Vol. III. North-Holland, Amsterdam, 2004, pp. 161–244.

  21. E. A. Carlen and W. Gangbo, Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Arch. Ration. Mech. Anal. 172(1):21–64 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  22. J. A. Carrillo, C. Cercignani, and I. M. Gamba, Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E (3) 62 6(part A):7700–7707 (2000).

    MathSciNet  Google Scholar 

  23. J. A. Carrillo, R. J. Mccann, and C. Villani, Contraction in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal. 179:217–263 (2006).

    Google Scholar 

  24. J. A. Carrillo, R. J. Mccann, and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19(3):971–1018 (2003).

    MATH  MathSciNet  Google Scholar 

  25. C. Cercignani, Recent developments in the mechanics of granular materials. In Fisica matematica e ingeneria delle strutture : rapporti e compatibilità, G. Ferrarese, Ed. Pitagora, Ed. Bologna, 1995, pp. 119–132.

  26. C. Cercignani, Shear flow of a granular material. J. Statist. Phys. 102(5–6):1407–1415 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Ernst and R. Brito, Anomalous velocity distributions in inelastic Maxwell gases. cond-mat/0310406.

  28. M. Ernst and R. Brito, Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems. In Granular Gas Dynamics, T. Poeschel and N. Brilliantov, Eds., vol. 624 of Lect. Notes Phys. Springer-Verlag, Berlin, 2003. cond-mat/0304608.

  29. M. H. Ernst, and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Statist. Phys. 109(3–4):407–432 (2002). Special issue dedicated to J. Robert Dorfman on the occasion of his sixty-fifth birthday.

  30. M. J. Esteban and B. Perthame, On the modified Enskog equation for elastic and inelastic collisions. Models with spin. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(3–4):289–308 (1991).

    MATH  MathSciNet  Google Scholar 

  31. I. M. Gamba, V. Panferov, and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Preprint.

  32. I. M. Gamba, V. Panferov, and C. Villani, On the Boltzmann equation for diffusively excited granular media. Comm. Math. Phys. 246(3):503–541 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. P. Haff, Grain flow as a fluid-mechanical phenomenon. J. Fluid. Mech. 134:401–430 (1983).

    Article  MATH  ADS  Google Scholar 

  34. J. T. Jenkins and M. W. Richman, Grad's 13-moment system for a dense gas of inelastic spheres. Arch. Rational Mech. Anal. 87(4):355–377 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. P. Krapivsky and E. Ben-Naim, Nontrivial velocity distributions in inelastic gases. J. Phys. A: Math. Gen. 35:L147–L152 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Y. Le Jan and A. S. Sznitman, Stochastic cascades and 3-dimensional Navier-Stokes equations. Probab. Theory Related Fields 109(3):343–366 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal. 172(3):407–428 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  38. B. Lods and G. Toscani, The dissipative linear Boltzmann equation for hard spheres. J. Statist. Phys. 117(3–4):635–664 (2004).

    Article  MathSciNet  Google Scholar 

  39. S. Mischler and C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem. J. Statist. Phys. this issue.

  40. S. Mischler, C. Mouhot, and M. Rodriguez Ricard, Cooling process for inelasic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior. J. Statist. Phys., this issue.

  41. C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173(2):169–212 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  42. G. Spiga and G. Toscani, The dissipative linear Boltzmann equation. Appl. Math. Lett. 17(3)(2004), 295–301.

    Article  MATH  MathSciNet  Google Scholar 

  43. G. Toscani, Kinetic and hydrodynamic models of nearly elastic granular flows. Monatsh. Math. 142(1–2):179–192 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  44. C. Villani, A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I. North-Holland, Amsterdam, 2002, pp. 71–305.

  45. C. Villani, Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  46. D. Williams and F. Mackintosh, Driven granular media in one dimension: Correlations and equation of state. Phys. Rev. E 54:R9–R12 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Villani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villani, C. Mathematics of Granular Materials. J Stat Phys 124, 781–822 (2006). https://doi.org/10.1007/s10955-006-9038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9038-6

Keywords

Navigation