Skip to main content
Log in

Narrow Escape, Part I

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A Brownian particle with diffusion coefficient D is confined to a bounded domain Ω by a reflecting boundary, except for a small absorbing window \(\partial\Omega_a\). The mean time to absorption diverges as the window shrinks, thus rendering the calculation of the mean escape time a singular perturbation problem. In the three-dimensional case, we construct an asymptotic approximation when the window is an ellipse, assuming the large semi axis a is much smaller than \(|\Omega|^{1/3}\) (\(|\Omega|\) is the volume), and show that the mean escape time is \(E\tau\sim{\frac{|\Omega|}{2\pi Da}} K(e)\), where e is the eccentricity and \(K(\cdot)\) is the complete elliptic integral of the first kind. In the special case of a circular hole the result reduces to Lord Rayleigh's formula \(E\tau\sim{\frac{|\Omega|}{4aD}}\), which was derived by heuristic considerations. For the special case of a spherical domain, we obtain the asymptotic expansion \(E\tau={\frac{|\Omega|}{4aD}} [1+\frac{a}{R} \log \frac{R}{a} + O(\frac{a}{R})]\). This result is important in understanding the flow of ions in and out of narrow valves that control a wide range of biological and technological function. If Ω is a two-dimensional bounded Riemannian manifold with metric g and \(\varepsilon=|\partial\Omega_a|_g/|\Omega|_g\ll1\), we show that \(E\tau ={\frac{|\Omega|_g}{D\pi}}[\log{\frac{1}{\varepsilon}}+O(1)]\). This result is applicable to diffusion in membrane surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hille, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer, Mass., 1992.

    Google Scholar 

  2. W. Im and B. Roux, Ion permeation and selectivity of ompf porin: A theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory. J. Mol. Bio. 322(4):851–869 (2002).

    Google Scholar 

  3. W. Im and B. Roux, Ions and counterions in a biological channel: A molecular dynamics simulation of ompf porin from escherichia coliin an explicit membrane with 1 m kcl aqueous salt solution. J. Mol. Bio. 319(5):1177–1197 (2002).

    Google Scholar 

  4. B. Corry, M. Hoyles, T. W. Allen, M. Walker, S. Kuyucak and S. H. Chung, Reservoir boundaries in brownian dynamics simulations of ion channels. Biophys. J. 82:1975–1984 (2002).

    Google Scholar 

  5. S. Wigger-Aboud, M. Saraniti and R. S. Eisenberg, Self-consistent particle based simulations of three dimensional ionic solutions. Nanotech 3:443 (2003).

    Google Scholar 

  6. T. A. van der Straaten, J. Tang, R. S. Eisenberg, U. Ravaioli and N. R. Aluru, Three-dimensional continuum simulations of ion transport through biological ion channels: Effects of charge distribution in the constriction region of porin. J. Computational Electronics 1:335–340 (2002).

    Google Scholar 

  7. L. Dagdug, A. M. Berezhkovskii, S. Y. Shvartsman and G. H. Weiss, Equilibration in two chambers connected by a capillary. J. Chem. Phys. 119(23):12473–12478 (2003).

    Article  ADS  Google Scholar 

  8. D. Holcman and Z. Schuss, Escape through a small opening: Receptor trafficking in a synaptic membrane. J. Stat. Phys. 117(5–6):975–1014 (2004).

    MathSciNet  Google Scholar 

  9. D. Holcman, Z. Schuss, E. Korkotian, Calcium dynamics in denritic spines and spine motility Bio. J. 87:81–91 (2004).

    Google Scholar 

  10. E. Korkotian, D. Holcman and M. Segal, Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons. Euro. J. Neuroscience 20:2649–2663, (2004).

    Google Scholar 

  11. R. C. Malenka, J. A. Kauer, D. J. Perkel and R. A. Nicoll, The impact of postsynaptic calcium on synaptic transmission–its role in long-term potentiation. Trends Neurosci. 12(11):444–450 (1989).

    Article  Google Scholar 

  12. D. Holcman and Z. Schuss, Stochastic chemical reactions in microdomains. J. Chem. Phys. 122:114710 (2005).

    Article  Google Scholar 

  13. C. W. Gardiner, Handbook of Stochastic Methods, 2-nd edition, Springer, NY (1985).

    Google Scholar 

  14. Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley Series in Probability and Statistics, Wiley, NY 1980.

  15. H. L. F. von Helmholtz, Crelle, Bd. 7 (1860).

  16. J. W. S. Baron Rayleigh, The Theory of Sound, Vol. 2, 2nd Ed., Dover, New York, 1945.

  17. I. V. Grigoriev, Y. A. Makhnovskii, A. M. Berezhkovskii, and V. Y. Zitserman, Kinetics of escape through a small hole. J. Chem. Phys. 116(22):9574–9577 (2002).

    Article  ADS  Google Scholar 

  18. J. D. Jackson, Classical Electrodymnics, 2nd Ed., Wiley, NY, 1975.

    Google Scholar 

  19. I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, Wiley, NY, 1966.

    Google Scholar 

  20. V. I. Fabrikant, Applications of Potential Theory in Mechanics, Kluwer, 1989.

  21. V. I. Fabrikant, Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer, 1991.

  22. A. I. Lur'e, Three-Dimensional Problems of the Theory of Elasticity, Interscience publishers, NY 1964.

    Google Scholar 

  23. S. S. Vinogradov, P. D. Smith and E. D. Vinogradova, Canonical Problems in Scattering and Potential Theory, Parts I and II, Chapman & Hall/CRC, 2002.

  24. M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, 1341, Springer-Verlag, NY (1988).

  25. V. A. Kozlov, V. G. Mazya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, American Mathematical Society, Mathematical Surveys and Monographs, vol. 52, 1997.

  26. V. A. Kozlov, J. Rossmann and V. G. Mazya, Spectral Problems Associated With Corner Singularities of Solutions of Elliptic Equations, Mathematical Surveys and Monographs, vol. 85, American Mathematical Society 2001.

  27. R. G. Pinsky, Asymptotics of the principal eigenvalue and expected hitting time for positive recurrent elliptic operators in a domain with a small puncture. J. of Fun. Analysis 200(1):177–197 (2003).

    MATH  MathSciNet  Google Scholar 

  28. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, (Translated by K. N. Trirogoff, L. W. Neustadt, ed.), John Wiley, 1962; also A.N. Kolmogorov, E.F. Mishchenko, L.S. Pontryagin, “On One Probability Optimal Control Problem”, Dokl. Acad. Nauk SSSR, 145(5):993–995 (1962).

    Google Scholar 

  29. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston 1992.

    Google Scholar 

  30. B. Matkowsky and Z. Schuss, The exit problem for randomly perturbed dynhamical systems. SIAM J. Appl. Math. 33(12):365–382 (1977).

    MathSciNet  Google Scholar 

  31. P. Hänngi, P. Talkner and M. Borkovec, 50 year after Kramers. Rev. Mod. Phys. 62:251 (1990).

    ADS  Google Scholar 

  32. M. Freidlin, Markov Processes And Differential Equations, Birkhauser Boston 2002.

    Google Scholar 

  33. W. D. Collins, On some dual series equations and their application to electrostatic problems for spheroidal caps. Proc. Cambridge Phil. Soc. 57:367–384 (1961).

    MATH  Google Scholar 

  34. W. D. Collins, Note on an electrified circular disk situated inside an earthed coaxial infinite hollow cylinder. Proc. Cambridge Phil. Soc. 57:623–627, (1961).

    MATH  Google Scholar 

  35. A. Singer, Z. Schuss and D. Holcman, Narrow Escape, Part III: Non-smooth domains and Riemann surfaces, (This journal).

  36. P. R. Garabedian, Partial Differential Equations, Wiley, NY 1964.

    Google Scholar 

  37. T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, NY, 1998.

    Google Scholar 

  38. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, NY 1972.

    Google Scholar 

  39. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Volume 1, McGraw-Hill, NY, 1954.

  40. G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 2000.

  41. W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, Chelsea Publishing Company, NY, 1949.

    Google Scholar 

  42. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, NY, 1973.

    Google Scholar 

  43. R. B. Kelman, Steady-State Diffusion Through a Finite Pore Into an Infinite Reservoir: an Exact Solution. Bull. of Math. Biop. 27:57–65 (1965).

    MathSciNet  Google Scholar 

  44. R. S. Eisenberg, M. M. Kłosek and Z. Schuss, Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations. J. Chem. Phys. 102:1767–1780 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, A., Schuss, Z., Holcman, D. et al. Narrow Escape, Part I. J Stat Phys 122, 437–463 (2006). https://doi.org/10.1007/s10955-005-8026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8026-6

Key Words

Navigation