Skip to main content
Log in

On-line determination of average grain size of polycrystalline silicon from melt duration of molten silicon

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We demonstrate a method of on-line determination of the average grain size of polycrystalline silicon (poly-Si) deduced from the melt duration of molten silicon during the phase transformation using an in-situ optical measurement system. Optical measurements revealed that the entire phase transformation processes are melting, nucleation, and resolidification. The average grain size of poly-Si can be directly deduced from the melt duration of molten Si under a thickness uniformity of precursor a-Si thin films below ±5%, a pulse-to-pulse variation in the excimer-laser-beam energy below 2% (standard deviation), and a laser-beam spatial homogeneity below 2.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Persidis, H. Baur, F. Pieralisi, et al., Solid State Electron., 52, 455 (2008).

    Article  ADS  Google Scholar 

  2. C. C. Tsai, Y. J. Lee, J. L. Wang, et al., Solid State Electron., 52, 365 (2008).

    Article  ADS  Google Scholar 

  3. Per I. Widenborg and Armin G. Aberle, J. Cryst. Growth, 306, 177 (2007).

    Article  ADS  Google Scholar 

  4. H. Kuriyama, T. Nohda, S. Ishida, et al., Jpn J. Appl. Phys., 32, 6190 (1993).

    Article  ADS  Google Scholar 

  5. H. Kirimura, Y. Uraoka, T. Fuyuki, et al., Appl. Phys. Lett., 86, 262106 (2005).

    Article  ADS  Google Scholar 

  6. T. Toyama, R. Muhida, T. Harano, et al., Jpn J. Appl. Phys., 42, L1347 (2003).

    Article  ADS  Google Scholar 

  7. L. Mariucci, R. Carluccio, A. Pecora, et al., Thin Solid Films, 337, 137 (1999).

    Article  ADS  Google Scholar 

  8. G. Kawachi, Y. Nakazaki, H. Ogawa, et al., Jpn J. Appl. Phys., 46, 51 (2007).

    Article  ADS  Google Scholar 

  9. S. Higashi and T. Sameshima, Jpn J. Appl. Phys., 40, 480 (2001).

    Article  ADS  Google Scholar 

  10. G. K. Giust and T. W. Sigmon, IEEE Trans. Electron Dev., 47, 207 (2000).

    Article  ADS  Google Scholar 

  11. A. T. Voutsas, Appl. Surf. Sci., 250, 208 (2003).

    Google Scholar 

  12. F. C. Voogt, R. Ishihara, and F. D. Tichelaar, J. Appl. Phys., 95, 2873 (2004).

    Article  ADS  Google Scholar 

  13. J. Siegel, J. Solis, and C. N. Afonso, Appl. Phys. Lett., 75, 1071 (1999).

    Article  ADS  Google Scholar 

  14. D. H. Auston, C. M. Surko, T. N. C. Venkatesan, et al., Appl. Phys. Lett., 33, 437 (1978).

    Article  ADS  Google Scholar 

  15. M.Hatano, S. Moon, M. Lee, et al., J. Non-Cryst. Sol., 266, 654 (2000).

    Article  ADS  Google Scholar 

  16. J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett., 63, 1969 (1993).

    Article  ADS  Google Scholar 

  17. F. Vega, N. Chaoui, J. Solis, et al., J. Appl. Phys., 97, 103519 (2005).

    Article  ADS  Google Scholar 

  18. G. E. Jellison, D. H. Lowndes, Appl. Phys. Lett., 47, 718 (1985).

    Article  ADS  Google Scholar 

  19. G. Williams, D. Sands, R. M. Geatches, and K. J. Reeson, Appl. Phys. Lett., 69, 1623 (1996).

    Article  ADS  Google Scholar 

  20. B. Rezek, C. E. Nebel, M. Stutzmann, Jpn J. Appl. Phys., 38, L1083 (1999).

    Article  ADS  Google Scholar 

  21. M. O. Thompson, G. J. Galvin, and J. W. Mayer, Phys. Rev. Lett., 52, 2360 (1984).

    Article  ADS  Google Scholar 

  22. L. Mariucci, A. Pecora, G. Fortunato, et al., Thin Solid Films, 427, 91 (2003).

    Article  ADS  Google Scholar 

  23. C. C. Kuo, J. Russ. Laser Res., 30, 12 (2009).

    Article  Google Scholar 

  24. C. C. Kuo, J. Russ. Laser Res., 29, 167 (2008).

    Article  Google Scholar 

  25. C. C. Kuo, J. Russ. Laser Res., 28, 383 (2007).

    Article  Google Scholar 

  26. C. C. Kuo, Opt. Lasers Eng., 46, 440 (2008).

    Article  Google Scholar 

  27. F. Simon, J. Brune, L. Herbst, Appl. Surf. Sci., 252, 4402 (2006).

    Article  ADS  Google Scholar 

  28. M. Fukutomi, K. Komori, K. Kawagishi, and K. Togano, Physica C, 357, 1342 (2001).

    Article  ADS  Google Scholar 

  29. J. F. Michaud, R. Rogel, T. M. Brhim, and M. Sarret, J. Non-Cryst. Sol., 352, 998 (2006).

    Article  ADS  Google Scholar 

  30. E. Fogarassy, J. Venturini, J. Korean Phys. Soc., 48, 40 (2006).

    Google Scholar 

  31. Z. Fan, P. K. Chu, IEEE Trans. Plasma Sci., 27, 633 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chil-Chyuan Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, CC. On-line determination of average grain size of polycrystalline silicon from melt duration of molten silicon. J Russ Laser Res 32, 12–18 (2011). https://doi.org/10.1007/s10946-011-9185-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-011-9185-3

Keywords

Navigation