Skip to main content
Log in

Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

It is well known that atmospheric turbulence causes significant variations of the arrival angle of laser beams used in free-space communications. Usually, angle-of-arrival fluctuations of an optical wave in the plane of the receiver aperture is calculated by Kolmogorov’s power spectral-density model. Unfortunately, recently increasing experimental evidence has shown that atmospheric turbulence statistics does not obey Kolmogorov’s power spectrum model in some parts of the troposphere and stratosphere. These experiments have prompted investigations of the optical-wave propagation through atmospheric turbulence described by nonclassical power spectra. In this paper, employing a new approach and considering a non-Kolmogorov power spectrum with a generalized power law instead of the constant standard power-law value 11/3 and a generalized amplitude factor instead of the constant value 0.033, we derive the variances of the angle-of-arrival fluctuations of the plane and spherical waves in a weak turbulence for the horizontal path. The concise closed-form expressions are obtained and used to analyze the influence of spectral power-law variations on the angle-of-arrival fluctuations. In addition, the outer scale effect is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Optical Engineering Press, Bellingham (2005).

    Book  Google Scholar 

  2. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill Book Company, New York (1961).

    Google Scholar 

  3. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, Israel Program for Scientific Translations, Jerusalem(1971).

    Google Scholar 

  4. M. Bonesi, D. Y. Churmakov, L. J. Ritchie, and I. V. Meglinski, Laser Phys. Lett., 4, 304 (2007).

    Article  Google Scholar 

  5. T. Chiba, Appl. Opt., 10, 2456 (1971).

    Article  ADS  Google Scholar 

  6. A. K. Majumdar and J. C. Ricklin, Proc. SPIE, 5892, 58920K-1 (2004).

    Article  Google Scholar 

  7. Y. Han Oh, J. C. Ricklin, E. Oh, et al., Proc. SPIE, 5550, 247 (2004).

    Article  ADS  Google Scholar 

  8. K. Kazaura, K. Omae, T. Suzuki, and M. Matsumoto, Opt. Express, 14, 4958 (2006).

    Article  ADS  Google Scholar 

  9. L. C. Andrews, R. L. Phillips, and P. T. Yu, Appl. Opt., 34, 7742 (1995).

    Article  ADS  Google Scholar 

  10. S. S. Chesnokov and S. E. Skipetrov, Opt. Commun., 141, 113 (1997).

    Article  ADS  Google Scholar 

  11. T. Chiba, Appl. Opt., 10, 2456 (1971).

    Article  ADS  Google Scholar 

  12. X. Chen and X Ji, Opt. Commun., 281, 4765 (2008).

    Article  ADS  Google Scholar 

  13. A. Consortini, C. Innocenti, and G. Paoli, Opt. Commun., 214, 9 (2002).

    Article  ADS  Google Scholar 

  14. G. M. Dalaudier, A. S. Gurvich, V. Kan, and C. Sidi, Adv. Space Res., 14, 61 (1994).

    Article  ADS  Google Scholar 

  15. A. Zilberman, E. Golbraikh, N. S. Kopeika, et al., Atmos. Res., 88, 66 (2008).

    Article  Google Scholar 

  16. D. T. Kyrazis, J. B. Wissler, D. D. B. Keating, et al., Proc. SPIE, 2120, 43 (1994).

    Article  ADS  Google Scholar 

  17. R. R. Beland, Proc. SPIE, 2375, 1111 (1995).

    Google Scholar 

  18. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE, 6457, 64570T-1 (2007).

    Article  Google Scholar 

  19. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE, 6551, 65510E-1( 2007).

    Article  Google Scholar 

  20. W. Du, S. Yu, L. Tan, et al., Opt. Commun., 282, 705 (2009).

    Article  ADS  Google Scholar 

  21. R. Conan, J. Borgnino, A. Ziad, and F. Martin, J. Opt. Soc. Am. A, 17, 1807 (2000).

    Article  ADS  Google Scholar 

  22. F. Roddier, in: E. Wolf (ed.), Progress in Optics. The effect of Atmospheric Turbulence in Optical Astronomy, Elsevier, New York (1981).

    Google Scholar 

  23. J. Borgnino, F. Martin, and A. Ziad, Opt. Commun., 91, 267 (1992).

    Article  ADS  Google Scholar 

  24. C. Ho and A. Wheelon, Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink, Jet Propulsion Laboratory, California (2004).

    Google Scholar 

  25. D. M. Winker, J. Opt. Soc. Am., 11, 1568 (1991).

    Article  Google Scholar 

  26. P. Hickson, J. Opt. Soc. Am., 11, 1667 (1994).

    Article  ADS  Google Scholar 

  27. A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York (1978).

    Google Scholar 

  28. W. L. Wolf and G. J. Zissis, The Infrared Handbook, Office of Naval Research, Washington (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhe Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, L., Du, W. & Ma, J. Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence. J Russ Laser Res 30, 552–559 (2009). https://doi.org/10.1007/s10946-009-9111-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-009-9111-0

Keywords

Navigation