Skip to main content
Log in

Spectroscopic Detection of Sulfur Oxides in the Aircraft Wake

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The absorption/emission spectral regions of SO, SO2, SO3, S2O and HSO are analyzed for the range from UV (λ ≥ 0.2 µm) to IR (λ < 30 µm) and are compared with the atmospheric transmission spectrum. It is shown that many vibrational bands of the compounds considered fall into atmospheric transmission windows. For the vibrational bands of SO, SO2, SO3, S2O, and HSO molecules there are some gases which hinder the absorption diagnostics of the indicated compounds. These interfering gases are natural components of atmospheric air as well as specific gases of aircraft engine exhaust. It is found that the least influence of the interference takes place in the 2400–2700 cm−1 IR region. The spectroscopic techniques used for the detection of aircraft engine exhaust compounds are briefly reviewed, with much consideration given to SO2. The IR absorption spectra of SO2 and other gases are calculated for the conditions of the aircraft engine nozzle exit. Narrow spectral intervals suitable for SO2 detection in a hot flow are determined. An analysis is made for the detection capabilities of CO2 lasers (including isotope CO2 lasers) and CO lasers (both fundamental band and first-overtone ones) as applied to SO2 detection in aircraft engine exhaust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Brown, R. C. Miake-Lye, M. R. Anderson, et al., J. Geophys. Res., 101, 22939 (1996).

    ADS  Google Scholar 

  2. H. Okabe, Photochemistry of Small Molecules, Wiley, New York (1978).

    Google Scholar 

  3. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York (1979).

    Google Scholar 

  4. G. Dujardin and S. Leach, J. Chem. Phys., 75, 2521 (1981).

    Article  ADS  Google Scholar 

  5. E. Tiemann, J. Molec. Spectrosc., 91, 60 (1982).

    Article  ADS  Google Scholar 

  6. M. Bogey, C. Demuynck, and J. L. Destombes, Chem. Phys., 66, 99 (1982).

    Article  Google Scholar 

  7. J. B. Nee and L. C. Lee, J. Chem. Phys., 84, 5303 (1986).

    Article  ADS  Google Scholar 

  8. Th. Klaus, A. H. Saleck, S. P. Belov, et al., J. Molec. Spectrosc., 180, 197 (1996).

    Article  ADS  Google Scholar 

  9. J. M. F. Elks and C. M. Western, J. Chem. Phys., 110, 7699 (1999).

    Article  ADS  Google Scholar 

  10. N. Hansen, U. Andresen, H. Dreizler, et al., Chem. Phys. Lett., 289, 311 (1998).

    Article  ADS  Google Scholar 

  11. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, New York (1945).

  12. D. E. Freeman, K. Yoshino, J. R. Esmond, and W. H. Parkinson, Planet. Space Sci., 32, 1125 (1984).

    ADS  Google Scholar 

  13. L. S. Rothman, R. R. Gamache, R. Tipping, et al., “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer, 48, 469 (1992) [Update HITRAN-96 version on CD-ROM].

    ADS  Google Scholar 

  14. B. Leroy, G. Le Bras, and P. Rigaud, Ann. Geophys., 37, 297 (1981).

    Google Scholar 

  15. J. B. Burkholder and S. McKeen, Geophys. Res. Lett., 24, 3201 (1997).

    Article  ADS  Google Scholar 

  16. N. F. Henfrey and B. A. Thrush, Chem. Phys. Lett., 102, 135 (1983).

    Article  ADS  Google Scholar 

  17. V. E. Bondybey and J. H. English, J. Mol. Spectrosc., 109, 221 (1985).

    Article  ADS  Google Scholar 

  18. N. J. Brassington, H. G. M. Edwards, D. W. Farwell, et al., J. Raman Spectrosc., 7, 154 (1978).

    ADS  Google Scholar 

  19. T. Muller, P. H. Vaccaro, F. Perez-Bernal, and F. Iachello, J. Chem. Phys., 111, 5038 (1999).

    ADS  Google Scholar 

  20. J. Lindenmayer, H. D. Rudolph, and H. Jones, J. Mol. Spectrosc., 119, 56 (1986).

    Article  ADS  Google Scholar 

  21. J. Lindenmayer and H. Jones, J. Mol. Spectrosc., 112, 71 (1985).

    Article  ADS  Google Scholar 

  22. U. Schurath, M. Weber, and K. H. Becker, J. Chem. Phys., 67, 110 (1977).

    ADS  Google Scholar 

  23. P. L. Hanst, in: J. N. Pitts, Jr. and R. L. Metcalf (Eds.), Advances in Environmental Science and Technology, Wiley, New York (1971), Vol. 2, p. 91.

    Google Scholar 

  24. E. D. Hinkley (Ed.), Laser Monitoring of the Atmosphere, Topics in Applied Physics, Springer, Berlin (1976), Vol. 14.

    Google Scholar 

  25. C. K. N. Patel, Science, 202, 157 (1978).

    ADS  Google Scholar 

  26. I. Turner and D. N. Waters, Int. J. Environ. Studies, 21, 165 (1983).

    Article  Google Scholar 

  27. W. B. Grant and R. T. Menzies, J. Air Pollut. Contr. Ass., 33, 187 (1983).

    Google Scholar 

  28. R. M. Measures, Laser Remote Sensing, Wiley, New York (1984).

    Google Scholar 

  29. R. Grisar, H. Preier, G. Schmidtke, and G. Restelli (Eds.), Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Reidel, Dordrecht (1987).

    Google Scholar 

  30. P. L. Meyer and M. W. Sigrist, Rev. Sci. Instrum., 61, 1779 (1990).

    ADS  Google Scholar 

  31. M. W. Sigrist (Ed.), Air Monitoring by Spectroscopic Techniques, Wiley, New York (1994).

    Google Scholar 

  32. J. A. Cavolowsky and M. E. Newfield, AIAA 92-5088, AIAA Fourth International Aerospace Planes Conference, 1–4 December, 1992, Orlando, FL, p. 1.

  33. J. Veale, L. Wang, and T. Gallagher, AIAA 92-5088, AIAA Fourth International Aerospace Planes Conference, 1–4 December, 1992, Orlando, FL, p. 10.

  34. J. Wormhoudt, T. A. Berkoff, and R. C. Miake-Lye, in: Trends in Optics and Photonics. Laser Applications to Chemical and Environmental Analysis, Vol. 36, Technical Digest Postconference Edition, Santa Fe, NM, 11–13 Feb., 2000 OSA, Washington (2000), p. 127.

  35. J. Heland and K. Schafer, in: Dr. U. Schumann et al. (Eds.), Pollutants from Air Traffic, Result of Atmospheric Research 1992–1997, Oberpfaffenhofen and Koln (December 1997), p. 395.

  36. E. Lindermeir, P. Haschberger, and V. Tank, in: Dr. U. Schumann et al. (Eds.), Pollutants from Air Traffic, Result of Atmospheric Research 1992–1997, Oberpfaffenhofen and Koln (December 1997), p. 415.

  37. J. Heland and K. Schafer, Appl. Opt., 36, 4922 (1997).

    Article  ADS  Google Scholar 

  38. P. Brockman and R. K. Seals, Jr., AIAA 6-th Fluid and Plasma Dynamics Conference, Palm Springs, CA, July 16–18, 1973, p. 17.

  39. J. Millerd, N. Brock, M. Brown, et al., AIAA 96-0533, 34-th Aerospace Science Meeting and Exhibit, January 15–18, 1996, Reno, NV, p. 1.

  40. E. D. Hinkley, Opto-Electronics, 4, 69 (1972).

    Article  Google Scholar 

  41. T. Hirshfeld, E. R. Schildkraut, H. Tannenbaum, and D. Tannenbaum, Appl. Phys. Lett., 22, 38 (1973).

    ADS  Google Scholar 

  42. D. A. Leonard, Opt. Quantum Electron., 7, 197 (1975).

    Article  MathSciNet  Google Scholar 

  43. G. Anderson, S. Clough, F. Kneizys, et al., “AFGL Atmospheric Constituent Profiles (0–120 km),” Air Force Geophysics Laboratory, AFGL-TR-86-0110, Environmental Research Paper No. 954 (1986).

  44. W. J. Witteman, The CO 2 Laser, Springer-Verlag, Berlin-Heidelberg (1987).

    Google Scholar 

  45. A. Ionin and I. Spalding, in: W. J. Witteman and V. N. Ochkin (Eds.), Gas Lasers — Recent Developments and Future Prospects, NATO ASI Series, 3. High technology, 10 (2000), p. 279.

  46. O. G. Buzykin, S. V. Ivanov, A. A. Ionin, et al., Atmos. Oceanic Opt., 14, 361 (2001).

    Google Scholar 

  47. O. G. Buzykin, S. V. Ivanov, A. A. Ionin, et al., Izv. Ross. Akad. Nauk, 66, 962 (2002).

    Google Scholar 

  48. A. Ionin, A. Kotkov, A. Kozlov, et al., Proc. SPIE, 4760, 1078 (2002).

    ADS  Google Scholar 

  49. S. V. Ivanov, A. A. Ionin, A. A. Kotkov, et al., in: G. D. Roy, S. M. Frolov, and A. M. Starik (Eds.), Combustion and Atmospheric Pollution [in Russian], Torus Press Ltd., Moscow (2003), p. 631.

    Google Scholar 

  50. S. V. Ivanov, A. A. Ionin, A. A. Kotkov, et al., Proc. SPIE, 5149, 61 (2003).

    Google Scholar 

  51. O. G. Buzykin, A. A. Ionin, S. V. Ivanov, et al., Proc. SPIE, 4644, 193 (2002).

    ADS  Google Scholar 

  52. N. G. Basov, G. D. Hager, A. A. Ionin, et al., IEEE J.Quantum Electron., 36, 810 (2000).

    Article  ADS  Google Scholar 

  53. G. Guelachvili, D. Villeneuve, R. Farrenq, et al., J. Mol. Spectrosc., 98, 64 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in English as Preprint No. 5 of the P. N. Lebedev Physical Institute, Moscow (2004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzykin, O.G., Ivanov, S.V., Ionin, A.A. et al. Spectroscopic Detection of Sulfur Oxides in the Aircraft Wake. J Russ Laser Res 26, 402–426 (2005). https://doi.org/10.1007/s10946-005-0043-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-005-0043-z

Keywords

Navigation