Skip to main content
Log in

Prediction of the effective diffusion coefficient in random porous media using the finite element method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A finite-element-based method is presented for evaluating the effective gas diffusion coefficient of porous solids. Using this method, the 3-D micro-scale geometries of the porous solids are constructed under the ANSYS platform by the parametric code; the relation between effective gas diffusivity and micro-scale features of random-distributed porous solids is established. The results show that in random-distributed pore media, there is a percolation threshold ε p, and this percolation threshold decreases with increasing coordination number of the pore network. The relationship between the effective diffusivity and porosity is strongly nonlinear when the porosity, ε, is less than a certain value ε L ; for ε > ε L , the relationship becomes quasi-linear. This dividing point ε L decreases with increasing coordination number. The larger the coordination number of the pore network, the higher the effective gas diffusivity. Based on the simulation results and observations, a formula relating the effective diffusion coefficient with porosity is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.P.S. Andrew, Chem. Eng. Sci. 36, 1431 (1981)

    Article  CAS  Google Scholar 

  2. N. Wakao, J.M. Smith, Chem. Eng. Sci. 17, 825 (1962)

    Article  CAS  Google Scholar 

  3. S. Litster, G. McLean, J. Power Sources 130, 61 (2004)

    Article  CAS  Google Scholar 

  4. B.A. Westrin, A. Axelsson, Biotechnol. Bioeng. 38, 439 (1991)

    Article  CAS  Google Scholar 

  5. G.H. Neale, W.K. Nader, AIChE J. 19, 112 (1973)

    Article  CAS  Google Scholar 

  6. M.M. Mezedur, M. Kaviany, W. Moore, AIChE J. 48, 15 (2002)

    Article  CAS  Google Scholar 

  7. R. Mann, J.J. Almeida, M.N. Mugerwa, Chem. Eng. Sci. 41, 2663 (1986)

    Article  CAS  Google Scholar 

  8. M.H. Abbasi, J.W. Evans, I.S. Abramson, AIChE J. 29, 617 (1983)

    Article  CAS  Google Scholar 

  9. R.M. Riley, F.J. Muzzio, H. Buettner, S.C. Reyes, AIChE J. 41, 691 (1995)

    Article  CAS  Google Scholar 

  10. M. Sahimi, D. Stauffer, Chem. Eng. Sci. 9, 2225 (1991)

    Article  Google Scholar 

  11. M. Sahimi, J. Chem. Phys. 96, 4718 (1992)

    Article  CAS  Google Scholar 

  12. S. Trinh, P Arce, B.R. Locke, Transport Porous Med. 38, 241 (2000)

    Article  Google Scholar 

  13. J.A. Currie, Brit. J. Appl. Phys. 11, 314 (1960)

    Article  CAS  Google Scholar 

  14. J. Hoogschagen, Ind. Eng. Chem. 47, 906 (1955)

    Article  CAS  Google Scholar 

  15. J.H. Kim, J.A. Ochoa, S. Whitaker, Transport Porous Med. 2, 327 (1987)

    Article  CAS  Google Scholar 

  16. J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd edn. (Claredon Press, Oxford, 1881)

  17. D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935)

    Article  CAS  Google Scholar 

  18. H.L. Weissberg, J. Appl. Phys. 34, 297 (1963)

    Google Scholar 

Download references

Acknowledgment

The authors of this paper are very grateful for the comments made by the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, D., Liu, ZS., Huang, C. et al. Prediction of the effective diffusion coefficient in random porous media using the finite element method. J Porous Mater 14, 49–54 (2007). https://doi.org/10.1007/s10934-006-9007-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-9007-0

Keywords

Navigation