Skip to main content
Log in

Investigation of structural order and morphology of MCM-41 mesoporous silica using an experimental design methodology

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A 24 factorial experiment program was carried out to study the main and interaction effects of four factors (mixture CTMABr/SiO2, H2O/SiO2, and EthAc/SiO2, and reaction time) on pore ordering, hexagonal unit cell parameter a0, and morphology of MCM-41. The MCM-41 was synthesized from a sodium silicate solution using cetyltrimethylammonium bromide (CTMABr) surfactant and ethyl acetate (EthAc) pH modifier. None of the factors acted independently to determine pore ordering, in contrast to earlier limited literature data, which suggested a higher CTMABr/SiO2 disturbs the assembly of the MCM-41 structure. However, there is no contradiction between these results considering that the poorly ordered product was obtained previously from a reaction mixture with the higher EthAc/SiO2 and lower H2O/SiO2, which are shown to hinder pore ordering. A combination of these factors, resulting in a higher concentration of acetic acid (hydrolysis of EthAc), and thus, in a lower mixture alkalinity, implies that the pH affects pore ordering in MCM-41. This is consistent with extensive literature data on this mesoporous material. A small (up to ∼5%) variation of a0 due to the reaction composition and time variation was insignificant compared to the reported doubling of a0 caused by the effects of varying the surfactant alkyl chain length, addition of swelling organic compounds, or hydrothermal restructuring. Particle morphology (hexagonal platelets, gyroids, and crescent-like or worm-shaped particles) depended on the combination of mixture CTMABr/SiO2, H2O/SiO2, and EthAc/SiO2. This is consistent with the literature evidence that morphogenesis of hexagonally ordered silica is a complex phenomenon involving a variety of reaction variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).

    Article  CAS  Google Scholar 

  2. A. Taguchi and F. Schüth, Micropor. Mesopor. Mater. 77, 1 (2005).

    Article  CAS  Google Scholar 

  3. A. Corma, Chem. Rev. 97, 2373 (1997).

    Article  CAS  Google Scholar 

  4. X.S. Zhao, G.Q. Lu, and G.J. Millar, Ind. Eng. Chem. Res. 35, 2075 (1996).

    Article  CAS  Google Scholar 

  5. J.S. Beck and J.C. Vartuli, Curr. Opin. Solid State Mater. Sci. 1, 76 (1996).

    CAS  Google Scholar 

  6. A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky, and B.F. Chmelka, Science 267, 1138 (1995).

    CAS  Google Scholar 

  7. A. Firouzi, F. Atef, A.G. Oertli, G.D. Stucky, and B.F. Chmelka, J. Am. Chem. Soc. 119, 3596 (1997).

    CAS  Google Scholar 

  8. G.J. de A.A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chem. Rev. 102, 4093 (2002).

    Article  Google Scholar 

  9. J. Frasch, B. Lebeau, M. Soulard, J. Patarin, and R. Zana, Langmuir 16, 9049 (2000).

    Article  CAS  Google Scholar 

  10. H.B.S. Chan, P.M. Budd, and T. deV. Naylor, J. Mater. Chem. 11, 951 (2001).

    Article  CAS  Google Scholar 

  11. D. Zhao, J. Sun, Q. Li, and G.D. Stucky, Chem. Mater. 12, 275 (2000).

    CAS  Google Scholar 

  12. G.A. Ozin, Can. J. Chem. 77, 2001 (1999).

    Article  CAS  Google Scholar 

  13. P. Selvam, S.K. Bhatia, and C.G. Sonwane, Ind. Eng. Chem. Res. 40, 3237 (2001).

    Article  CAS  Google Scholar 

  14. S. Biz and M.L. Occelli, Catal. Rev. – Sci. Eng. 40, 329 (1998).

    CAS  Google Scholar 

  15. R.G. Petersen, Design and Analysis of Experiments (Marcel Dekker, New York, 1985).

    Google Scholar 

  16. D.C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1976).

    Google Scholar 

  17. P.T. Tanev and T.J. Pinnavaia, Chem. Mater. 8, 2068 (1996).

    Article  CAS  Google Scholar 

  18. G. Ø ye, J. Sjöblom, and M. Stöcker, Micropor. Mesopor. Mater. 34, 291 (2000).

    Article  Google Scholar 

  19. R. Ryoo and J.M. Kim, J. Chem. Soc., Chem. Commun. 711 (1995).

  20. H.-P. Lin, S. Cheng, and C.-Y. Mou, Micropor. Mater. 10, 111 (1997).

    CAS  Google Scholar 

  21. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R.X. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B.F. Chmelka, Science 261, 1299 (1993).

    CAS  Google Scholar 

  22. K.J. Edler and J.W. White, Chem. Mater. 9, 1226 (1997).

    Article  CAS  Google Scholar 

  23. G. Schulz-Ekloff, J. Rathouský, and A. Zukal, Int. J. Inorg. Mater. 1, 97 (1999).

    Article  CAS  Google Scholar 

  24. Q. Cai, W.-Y. Lin, F.-S. Xiao, W.-Q. Pang, X.-H. Chen, and B.-S. Zou, Micropor. Mesopor. Mater. 32, 1 (1999).

    Article  CAS  Google Scholar 

  25. C.-F. Cheng, D.H. Park, and J. Klinowski, J. Chem. Soc., Faraday Trans. 93, 193 (1997).

    CAS  Google Scholar 

  26. C.-F. Cheng, W. Zhou, D.H. Park, J. Klinowski, M. Hargreaves, and L.F. Gladden, J. Chem. Soc., Faraday Trans. 93, 359 (1997).

    CAS  Google Scholar 

  27. Z. Luan, C.-F. Cheng, W. Zhou, and J. Klinowski, J. Phys. Chem. 99, 1018 (1995).

    CAS  Google Scholar 

  28. G. Schulz-Ekloff, J. Rathouský, and A. Zukal, Micropor. Mesopor. Mater. 27, 273 (1999).

    Article  CAS  Google Scholar 

  29. Y. Rohlfing, D. Wöhrle, M. Wark, G. Schulz-Ekloff, J. Rathouský, and A. Zukal, in Zeolites and Mesoporous Materials at the Dawn of the 21st Century, edited by A. Sayari, F. DiRenzo, F. Fajula, and J. Vedrine, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 2000), Vol. 129.

  30. J. Rathouský, G. Schulz-Ekloff, J. Had, and A. Zukal, Phys. Chem. Chem. Phys. 1, 3053 (1999).

    Article  Google Scholar 

  31. D. Khushalani, A. Kuperman, G.A. Ozin, K. Tanaka, J. Garcés, M.M. Olken, and N. Coombs, Adv. Mater. 7, 842 (1995).

    Article  CAS  Google Scholar 

  32. R. Mokaya, Micropor. Mesopor. Mater. 44–45, 119 (2001).

    Google Scholar 

  33. R. Ryoo and S. Jun, J. Phys. Chem. B 101, 317 (1997).

    CAS  Google Scholar 

  34. Q. Huo, D.I. Margolese, and G.D. Stucky, Chem. Mater. 8, 1147 (1996).

    Article  CAS  Google Scholar 

  35. U. Ciesla and F. Schüth, Micropor. Mesopor. Mater. 27, 131 (1999).

    Article  CAS  Google Scholar 

  36. G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, New York, 1987).

    Google Scholar 

  37. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

  38. J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Roth, M.E. Leonowicz, S.B. McCullen, S.D. Hellring, J.S. Beck, J.L. Schlenker, D.H. Olson, and E.W. Sheppard, Chem. Mater. 6, 2317 (1994).

    CAS  Google Scholar 

  39. M.T. Anderson, J.E. Martin, J.G. Odinek, and P.P. Newcomer, Chem. Mater. 10, 311 (1998).

    CAS  Google Scholar 

  40. F. Di Renzo, D. Desplantier, A. Galarneau, and F. Fajula, Catal. Today 66, 75 (2001).

    Article  CAS  Google Scholar 

  41. T.R. Pauly, V. Petkov, Y. Liu, S.J.L. Billinge, and T.J. Pinnavaia, J. Am. Chem. Soc. 124, 97 (2002).

    Article  CAS  Google Scholar 

  42. C-Y. Chen, H-X. Li, and M.E. Davis, Micropor. Mater. 2, 17 (1993).

    Google Scholar 

  43. N. Coustel, F. Di Renzo, and F. Fajula, J. Chem. Soc., Chem. Commun. 967 (1994).

  44. N. Ulagappan and C.N.R. Rao, Chem. Commun. 2759 (1996).

  45. A. Sayari, Y. Yang, M. Kruk, and M. Jaroniec, J. Phys. Chem. B 103, 3651 (1999).

    Article  CAS  Google Scholar 

  46. A. Corma, Q. Kan, M.T. Navarro, J. Pérez-Pariente, and F. Rey, Chem. Mater. 9, 2123 (1997).

    Article  CAS  Google Scholar 

  47. M. Kruk, M. Jaroniec, and A. Sayari, J. Phys. Chem. B 103, 4590 (1999).

    CAS  Google Scholar 

  48. H. Yang, N. Coombs, and G.A. Ozin, Nature 386, 692 (1997).

    Article  CAS  Google Scholar 

  49. C.-F. Cheng, H. He, W. Zhou, and J. Klinowski, Chem. Phys. Lett. 244, 117 (1995).

    Article  CAS  Google Scholar 

  50. G.A. Ozin, C.T. Kresge, and H. Yang, in Mesoporous Molecular Sieves 1998, edited by L. Bonneviot, F. Béland, C. Danumah, S. Giasson, and S. Kaliaguine, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1998), Vol. 117.

  51. N. Coombs, D. Khushalani, S. Oliver, G.A. Ozin, G.C. Shen, I. Sokolov, and H. Yang, J. Chem. Soc., Dalton Trans. 3941 (1997).

  52. S. Sadasivan, D. Khushalani, and S. Mann, J. Mater. Chem. 13, 1023 (2003).

    Article  CAS  Google Scholar 

  53. G.A. Ozin, H. Yang, I. Sokolov, and N. Coombs, Adv. Mater. 9, 662 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Sacco Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonza, A.M., Warzywoda, J. & Sacco, A. Investigation of structural order and morphology of MCM-41 mesoporous silica using an experimental design methodology. J Porous Mater 13, 37–47 (2006). https://doi.org/10.1007/s10934-006-5488-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-5488-0

Keywords

Navigation