Skip to main content

Advertisement

Log in

Glycoproteomic Analysis of Human Lung Adenocarcinomas Using Glycoarrays and Tandem Mass Spectrometry: Differential Expression and Glycosylation Patterns of Vimentin and Fetuin A Isoforms

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Human lung cancer is a major cause of cancer mortality worldwide. Advances in pathophysiologic understanding and novel biomarkers for diagnosis and treatment are significant tasks. We have undertaken a comprehensive glycoproteomic analysis of human lung adenocarcinoma tissues. Glycoproteins from paired lung adenocarcinoma and normal tissues were enriched by the lectins Con A, WGA, and AIL. 2-D PAGE revealed 30 differentially expressed protein spots, and 15 proteins were identified by MS/MS, including 8 up- (A1AT, ALDOA, ANXA1, CALR, ENOA, PDIA1, PSB1 and SODM) and 7 down-regulated (ANXA3, CAH2, FETUA, HBB, PRDX2, RAGE and VIME) proteins in lung cancer. By reverse-transcription PCR, nine proteins showed positive correlation between mRNA and glycoprotein expression. Vimentin and fetuin A (α2-HS-glycoprotein) were selected for further investigation. While for vimentin there was little correlation between total protein and mRNA abundance, expression of WGA-captured glycosylated vimentin protein was frequently decreased in cancer. Glycoarray analysis suggested that vimentins from normal and cancerous lung tissue differ in their contents of sialic acid and terminal GlcNAc. For fetuin A, both total protein and mRNA abundance showed concordant decrease in cancer. WGA- and AIL-binding glycosylated fetuin A was also consistently decreased in cancer. Glycoarray analysis suggested that high mannose glycan structures on fetuin A were only detectable in cancer but not normal tissue. The intriguing expression patterns of different isoforms of glycosylated vimentin and fetuin A in lung cancer illustrate the complexities and benefits of in-depth glycoproteomic analysis. In particular, the discovery of differentially glycosylated protein isoforms in lung adenocarcinoma may represent avenues towards new functional biomarkers for diagnosis, treatment guidance, and response monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Con A:

Concanavalin A

WGA:

Wheat germ agglutinin

AIL:

Amylase inhibitor-like protein (jacalin)

CALR:

Calreticulin

VIME:

Vimentin

FETUA:

Fetuin A (α2-HS-glycoprotein)

A1AT:

α1-Antitrypsin

PDIA1:

Protein disulfide isomerase A1

PRDX2:

Peroxiredoxin-2

ANXA1:

Annexin A1

ANXA3:

Annexin A3

RAGE:

Receptor for advanced glycosylation end products

SODM:

Mitochondrial superoxide dismutase

CAH2:

Carbonic anhydrase 2

ENOA:

α-Enolase

HBB:

Hemoglobin subunit β

PSB1:

Proteasome subunit β type 1

ALDOA:

Fructose-bisphosphate aldolase A

References

  1. Pilobello KT, Mahal LK (2007) Curr Opin Chem Biol 11(3):300–305

    Article  CAS  Google Scholar 

  2. von der Lieth CW, Lutteke T, Frank M (2006) Biochim Biophys Acta 1760(4):568–577

    Google Scholar 

  3. Zaia J (2004) Mass Spectrom Rev 23(3):161–227

    Article  CAS  Google Scholar 

  4. Apweiler R, Hermjakob H, Sharon N (1999) Biochim Biophys Acta 1473(1):4–8

    CAS  Google Scholar 

  5. Kornfeld R, Kornfeld S (1985) Annu Rev Biochem 54:631–664

    Article  CAS  Google Scholar 

  6. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Crit Rev Biochem Mol Biol 33(3):151–208

    Article  Google Scholar 

  7. Helenius A, Aebi M (2001) Science 291(5512):2364–2369

    Article  CAS  Google Scholar 

  8. Lowe JB (2001) Cell 104(6):809–812

    Article  CAS  Google Scholar 

  9. Varki A (1993) Glycobiology 3(2):97–130

    Article  CAS  Google Scholar 

  10. Ohtsubo K, Marth JD (2006) Cell 126(5):855–867

    Article  CAS  Google Scholar 

  11. Bironaite D, Nesland JM, Dalen H, Risberg B, Bryne M (2000) Tumour Biol 21(3):165–175

    Article  CAS  Google Scholar 

  12. Dennis JW, Granovsky M, Warren CE (1999) Bioessays 21(5):412–421

    Article  CAS  Google Scholar 

  13. An HJ, Miyamoto S, Lancaster KS, Kirmiz C, Li B, Lam KS, Leiserowitz GS, Lebrilla CB (2006) J Proteome Res 5(7):1626–1635

    Article  CAS  Google Scholar 

  14. Kirmiz C, Li B, An HJ, Clowers BH, Chew HK, Lam KS, Ferrige A, Alecio R, Borowsky AD, Sulaimon S, Lebrilla CB, Miyamoto S (2007) Mol Cell Proteomics 6(1):43–55

    CAS  Google Scholar 

  15. Lehne G (2000) Curr Drug Targets 1(1):85–99

    Article  CAS  Google Scholar 

  16. Varki A (1999) Glycosylation changes in cancer. In: Varki A, Cummings R, Esko JD, Freeze H, Hart G, Marth JD (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  17. Qiu R, Regnier FE (2005) Anal Chem 77(9):2802–2809

    Article  CAS  Google Scholar 

  18. Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Eur J Biochem 117(1):41–55

    Article  CAS  Google Scholar 

  19. Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization and carbohydrate binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins—properties, functions and applications in biology and medicine. Academic Press, Orlando

    Google Scholar 

  20. Gu C, Oyama T, Osaki T, Li J, Takenoyama M, Izumi H, Sugio K, Kohno K, Yasumoto K (2004) Br J Cancer 90(2):436–442

    Article  CAS  Google Scholar 

  21. Lopez-Ferrer A, Barranco C, de Bolos C (2002) Am J Clin Pathol 118(5):749–755

    Article  CAS  Google Scholar 

  22. Rho JH, Qin S, Wang JY, Roehrl MH (2008) J Proteome Res 7(7):2959–2972

    Article  CAS  Google Scholar 

  23. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68(5):850–858

    Article  CAS  Google Scholar 

  24. Peng J, Gygi SP (2001) J Mass Spectrom 36(10):1083–1091

    Article  CAS  Google Scholar 

  25. Edge AS, Spiro RG (1987) J Biol Chem 262(33):16135–16141

    CAS  Google Scholar 

  26. Hayase T, Rice KG, Dziegielewska KM, Kuhlenschmidt M, Reilly T, Lee YC (1992) Biochemistry 31(20):4915–4921

    Article  CAS  Google Scholar 

  27. Kolarich D, Weber A, Turecek PL, Schwarz HP, Altmann F (2006) Proteomics 6(11):3369–3380

    Article  CAS  Google Scholar 

  28. Kueper T, Grune T, Prahl S, Lenz H, Welge V, Biernoth T, Vogt Y, Muhr GM, Gaemlich A, Jung T, Boemke G, Elsasser HP, Wittern KP, Wenck H, Stab F, Blatt T (2007) J Biol Chem 282(32):23427–23436

    Article  CAS  Google Scholar 

  29. Roberts NB, Green BN, Morris M (1997) Clin Chem 43(5):771–778

    CAS  Google Scholar 

  30. Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H, Freeze HH (2002) J Neurochem 80(6):998–1008

    Article  CAS  Google Scholar 

  31. Julenius K, Molgaard A, Gupta R, Brunak S (2005) Glycobiology 15(2):153–164

    Article  CAS  Google Scholar 

  32. Stevens VJ, Vlassara H, Abati A, Cerami A (1977) J Biol Chem 252(9):2998–3002

    CAS  Google Scholar 

  33. Hong SH, Misek DE, Wang H, Puravs E, Giordano TJ, Greenson JK, Brenner DE, Simeone DM, Logsdon CD, Hanash SM (2004) Cancer Res 64(15):5504–5510

    Article  CAS  Google Scholar 

  34. Steinert PM, Roop DR (1988) Annu Rev Biochem 57:593–625

    Article  CAS  Google Scholar 

  35. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM (2003) Cancer Res 63(10):2658–2664

    CAS  Google Scholar 

  36. Thiery JP (2002) Nat Rev Cancer 2(6):442–454

    Article  CAS  Google Scholar 

  37. Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-i M, Ikeda JI, Konishi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2007) Br J Cancer 96(6):986–992

    Article  CAS  Google Scholar 

  38. Swallow CJ, Partridge EA, Macmillan JC, Tajirian T, DiGuglielmo GM, Hay K, Szweras M, Jahnen-Dechent W, Wrana JL, Redston M, Gallinger S, Dennis JW (2004) Cancer Res 64(18):6402–6409

    Article  CAS  Google Scholar 

  39. Matsuzaki K, Okazaki K (2006) J Gastroenterol 41(4):295–303

    Article  CAS  Google Scholar 

  40. Watzlawick H, Walsh MT, Yoshioka Y, Schmid K, Brossmer R (1992) Biochemistry 31(48):12198–12203

    Article  CAS  Google Scholar 

  41. Lang GA, Yeaman GR (2001) J Autoimmun 16(2):151–161

    Article  CAS  Google Scholar 

  42. Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR (1982) Nature 298(5872):329–334

    Article  CAS  Google Scholar 

  43. Vaughan L, Lorier MA, Carrell RW (1982) Biochim Biophys Acta 701(3):339–345

    CAS  Google Scholar 

  44. Goulet F, Moore KG, Sartorelli AC (1992) Biochem Biophys Res Commun 188(2):554–558

    Article  CAS  Google Scholar 

  45. Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, Sinclair LK, Foeller C, Chow EP, Browing JL, Ramachandran KL et al (1986) Nature 320(6057):77–81

    Article  CAS  Google Scholar 

  46. Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG, Hanash SM (2001) Proc Natl Acad Sci USA 98(17):9824–9829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the NIAID/NIH. We thank Drs. Bin Ye, Brian Liu, and Sam Mok of Brigham and Women’s Hospital for use of proteomic equipment. We thank the Taplin Biological Mass Spectrometry Center of Harvard Medical School for expert advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. A. Roehrl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Detailed information on the MS/MS sequencing of the identified protein spots. (DOCX 68 kb)

Supplementary Fig. 1

2-D PAGE profiles of lectin-captured proteins from patient 4. (PDF 382 kb)

Supplementary Fig. 2

Magnified paired views of the 16 protein spots (arrowheads) from representative patient samples sequenced by MS/MS (N, normal lung; C, cancer). Spots 13 and 22 yielded the same protein identity (RAGE). (PDF 430 kb)

Supplementary Fig. 3

Comparison of mRNA expression levels between paired normal and lung adenocarcinoma tissues for 11 selected glycoproteins. RT-PCR analysis was performed on matched normal/tumor pairs from 7 patients (N/D, not detected). Data for the remaining 3 glycoproteins are shown in Fig. 2. RPL13A (ribosomal protein L13A) was used as a control transcript. The tumor to normal (T:N) ratio of each sample was normalized relative to the corresponding control transcript ratio. Amplification of ANXA3 (Fig. 1, spot 9) mRNA was not successful despite attempts with two sets of PCR primers. The average mRNA ratios (T:N) are shown in Table 1. (PDF 263 kb)

Supplementary Fig. 4

Confirmation of glycosylation and comparison of total protein abundance of vimentin and fetuin A. Presence of N-glycosylation of vimentin (A) and fetuin A (B) was demonstrated by PNGase F digestion. Unfractionated total soluble proteins were digested with PNGase F ((-), protein samples before PNGase F treatment; P, PNGase F-treated samples). Vimentin showed several protein bands. The most dominant band was selected for mobility shift calculation. Fetuin A showed two bands, both of which were shifted after deglycosylation to a similar extent. The calculated molecular weights (in kDa) of the vimentin bands are: A, 50.6; A’, 49.2; B, 50.6; B’, 49.7; C, 50.7; C’, 49.0; D, 50.6; D’, 49.5. The calculated molecular weights (in kDa) of the fetuin A bands are: E, 48.5; E’, 46.0; e, 44.1; e’, 42.3; F, 48.2; F’, 46.0; G, 48.6; G’, 46.3; H, 48.6; H’, 46.3. (C) Western blot comparison of total vimentin and fetuin A proteins. Unfractionated lung tissue protein extracts were used. The total intensities of all isoforms were used for comparison. Normalized expression ratios (T:N) are shown below the protein bands using (-actin the as an internal control. Ratios of >1, 1, or <1 describe increased, unchanged, or decreased expression in cancer, respectively. (PDF 300 kb)

Supplementary Fig. 5

Representative lectin glycoarray images. The fingerprint patterns of glycosylated vimentin (top) or fetuin A (bottom) isolated from cancer tissue protein extracts are shown. (PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rho, JH., Roehrl, M.H.A. & Wang, J.Y. Glycoproteomic Analysis of Human Lung Adenocarcinomas Using Glycoarrays and Tandem Mass Spectrometry: Differential Expression and Glycosylation Patterns of Vimentin and Fetuin A Isoforms. Protein J 28, 148–160 (2009). https://doi.org/10.1007/s10930-009-9177-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9177-0

Keywords

Navigation