Skip to main content
Log in

Synthesis of Short-chain-length/Medium-chain-length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisome of the Transgenic Arabidopsis Thaliana Harboring the PHA Synthase Gene from Pseudomonas sp. 61-3

  • ORIGINAL PAPER
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this paper, the photosynthetic production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers is reported. The wild-type and highly active doubly mutated PHA synthase 1 (S325T/Q481K, abbreviated ST/QK) genes from Pseudomonas sp. 61-3 were introduced into Arabidopsis thaliana. Peroxisome targeting signal 1 (PTS1) was used to target PHA synthases into the peroxisome to synthesize PHA from the intermediates of the β-oxidation pathway. The transgenic Arabidopsis produced PHA copolymers consisting of 40–57 mol% 3-hydroxybutyrate, 21–49 mol% 3-hydroxyvalerate, 8–18 mol% 3-hydroxyhexanoate, and 2–8 mol% 3-hydroxyoctanoate. The maximum PHA contents were 220μ g/g cell dry weight (cdw) in leaves, and 36μ g/g cdw in stems, respectively. The expression of the ST/QK mutated PHA synthase in leaves gene did not lead to significant difference in PHA content and monomer composition of PHAs, compared to the wild-type PHA synthase gene, suggesting that the supply of monomers may be a rate-determining step of PHA biosynthesis in the peroxisome. However, in stems, there were significant differences dependent on whether the wild-type or ST/QK mutated PHA synthase was expressed. These results suggest that tissue-specific monomer availability is important in determining the final mol% composition of PHA copolymers produced by the peroxisome in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Doi Y (1990) Microbial polyesters. VHC Publishers, New York

    Google Scholar 

  2. Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21

    CAS  Google Scholar 

  3. de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) J Bacteriol 154:870

    Google Scholar 

  4. Doi Y, Kitamura S, Abe H (1995) Macromolecules 28:4822

    Article  CAS  Google Scholar 

  5. Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) Macromolecules 27:878

    Article  CAS  Google Scholar 

  6. Matsusaki H, Abe H, Doi Y (2000) Biomacromolecules 1:17

    Article  CAS  Google Scholar 

  7. Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y (1998) J Bacteriol 180:6459

    CAS  Google Scholar 

  8. Matsumoto K, Nakae S, Taguchi K, Matsusaki H, Seki M, Doi Y (2001) Biomacromolecules 2:934

    Article  CAS  Google Scholar 

  9. Arnold FH, (1998) Acc Chem Res 31:125

    Article  CAS  Google Scholar 

  10. Taguchi S, Doi Y (2004) Macromol Biosci 4:145

    Article  CAS  Google Scholar 

  11. Taguchi S, Ozaki A, Momose H (1998) Appl Environ Microbiol 64:492

    CAS  Google Scholar 

  12. Takase K, Matsumoto K, Taguchi S, Doi Y (2004) Biomacromolecules 5:480

    Article  CAS  Google Scholar 

  13. Takase K, Taguchi S, Doi Y (2003) J Biochem 133:139

    Article  CAS  Google Scholar 

  14. Matsumoto K, Takase K, Aoki E, Doi Y, Taguchi S (2005) Biomacromolecules 6:99

    Article  CAS  Google Scholar 

  15. Matsumoto K, Nagao R, Murata T, Arai Y, Kichise T, Nakashita H, Taguchi S, Shimada H, Doi Y (2005) Biomacromolecules 6:2126

    Article  CAS  Google Scholar 

  16. Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Planta 211:841

    Article  CAS  Google Scholar 

  17. Nawrath C, Poirier Y, Somerville C (1994) Proc Natl Acad Sci 91:12760

    Article  CAS  Google Scholar 

  18. Poirier Y, Dennis D, Klomparens K, Somerville C (1992) Science 256:520

    Article  CAS  Google Scholar 

  19. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, SR Padgette, Kishore G, Gruys KJ, (1999) Nat Biotechnol 17:1011

    Article  CAS  Google Scholar 

  20. Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE, Gruys KJ (1999) Planta 209:547

    Article  CAS  Google Scholar 

  21. Mott IEC, Hughes A, Dunnill P (2000) Bioprocess Engi 22:451

    Article  CAS  Google Scholar 

  22. Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Biosci Biotechnol Biochem 63:870

    Article  CAS  Google Scholar 

  23. Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Biosci Biotechnol Biochem 65:1688

    Article  CAS  Google Scholar 

  24. Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Plant Cell Physiol 45:1176

    Article  CAS  Google Scholar 

  25. Lossl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Plant Cell Rep 21:891

    CAS  Google Scholar 

  26. Arai Y, Nakashita H, Doi Y, Yamaguchi I (2005) Plant Biotechnol 18:289

    Google Scholar 

  27. Hahn JJ, Eschenlauer AC, Sleytr UB, Somers DA, Srienc F (1999) Biotechnol Prog 15:1053

    Article  CAS  Google Scholar 

  28. Zhong H, Teymouri F, Chapman B, Maqbool SB, Sabzikar R, El Maghraby Y, Dale B, Sticklen MB (2003) Plant Science 165:455

    Article  CAS  Google Scholar 

  29. Saruul P, Srienc F, Somers DA, Samac DA (2002) Crop Science 42:919

    Article  CAS  Google Scholar 

  30. Menzel G, Harloff HJ, Jung C (2003) Appl Microbiol Biotechnol 60:571

    CAS  Google Scholar 

  31. Mittendorf V, Bongcam V, Allenbach L, Coullerez G, Martini N, Poirier Y (1999) Plant J 20:45

    Article  CAS  Google Scholar 

  32. Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbüchel A, Poirier Y (1998) Proc Natl Acad Sci 95:13397

    Article  CAS  Google Scholar 

  33. Moire L, Rezzonico E, Goepfert S, Poirier Y (2004) Plant Physiol 134:432

    Article  CAS  Google Scholar 

  34. Poirier Y, Ventre G, Caldelari D (1999) Plant Physiol 121:1359

    Article  CAS  Google Scholar 

  35. Nishimura M, Hayashi M, Kato A, Yamaguchi K, Mano S (1996) Cell Struct Funct 21:387

    Article  CAS  Google Scholar 

  36. Hooks MA, Kellas F, Graham IA (1999) Plant J 20:1

    Article  CAS  Google Scholar 

  37. Froman BE, Edwards PC, Bursch AG, Dehesh K (2000) Plant Physiol 123:733

    Article  CAS  Google Scholar 

  38. Hayashi H, De Bellis L, Ciurli A, Kondo M, Hayashi M, Nishimura R (1999) J Biol Chem 274:12715

    Article  CAS  Google Scholar 

  39. Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde JP, Bryce JH, Graham IA, Smith SM (2001) Plant J 28:1

    Article  CAS  Google Scholar 

  40. Arai Y, Nakashita H, Suzuki Y, Kobayashi Y, Shimizu T, Yasuda M, Doi Y, Yamaguchi I (2002) Plant Cell Physiol 43:555

    Article  CAS  Google Scholar 

  41. Clough SJ, Bent AF (1998) Plant J 16:735

    Article  CAS  Google Scholar 

  42. Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) J Biol Chem 278:21370

    Article  CAS  Google Scholar 

  43. Slater S, Gallaher T, Dennis D (1992) Appl Environ Microbiol 58:1089

    CAS  Google Scholar 

  44. Lageveen RG, Muisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Appl Environ Microbiol 54:2924

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Hiromi Masaki for supporting plant manipulations, Dr. Christopher Nomura for valuable discussions and RIKEN Research Resources Center (RRC) for DNA sequence analysis. This work was partly supported by Grant-in-aid for Scientific Research of Japan (Grant No. 16710059 to K.M.), Special Postdoctoral Research Program of RIKEN Institute (to K.M. and K.T.), Solution Oriented Research for Science, Technology (SORST) of the Japan Science and Technology Corporation (JST), Hokkaido Foundation for the Promotion of Scientific and Industrial Technology, and Industrial Technology Research Grant Program in 2003 from the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichiro Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, K., Arai, Y., Nagao, R. et al. Synthesis of Short-chain-length/Medium-chain-length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisome of the Transgenic Arabidopsis Thaliana Harboring the PHA Synthase Gene from Pseudomonas sp. 61-3. J Polym Environ 14, 369–374 (2006). https://doi.org/10.1007/s10924-006-0035-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-006-0035-2

Keywords

Navigation