Skip to main content
Log in

Numerical Treatment of Stokes Solvent Flow and Solute–Solvent Interfacial Dynamics for Nonpolar Molecules

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We design and implement numerical methods for the incompressible Stokes solvent flow and solute–solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute–solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute–solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alexander-Katz, A., Schneider, M.F., Schneider, S.W., Wixforth, A., Netz, R.R.: Shear-flow-induced unfolding of polymeric globules. Phys. Rev. Lett. 97, 138101 (2006)

    Article  Google Scholar 

  2. Baron, R., McCammon, J.A.: Molecular recognition and ligand association. Annu. Rev. Phys. Chem. 64, 151–175 (2013)

    Article  Google Scholar 

  3. Chen, J., Brooks III, C.L., Khandogin, J.: Recent advances in implicit solvent based methods for biomolecular simulations. Curr. Opin. Struct. Biol. 18, 140–148 (2008)

    Article  Google Scholar 

  4. Cheng, L., Dzubiella, J., McCammon, J.A., Li, B.: Application of the level-set method to the implicit solvation of nonpolar molecules. J. Chem. Phys. 127, 084503 (2007)

    Article  Google Scholar 

  5. Cheng, L., Li, B., Wang, Z.: Level-set minimization of potential controlled hadwiger valuations for molecular solvation. J. Comput. Phys. 229, 8497–8510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, T.A.: Algorithm 832: UMFPACK v4.3-an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dzubiella, J., Swanson, J., McCammon, J.: Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96, 087802 (2006)

    Article  Google Scholar 

  8. Dzubiella, J., Swanson, J., McCammon, J.: Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 124, 084905 (2006)

    Article  Google Scholar 

  9. Guo, Z., Li, B., Dzubiella, J., Cheng, L.-T., McCammon, J.A., Che, J.: Heterogeneous hydration of p53/MDM2 complex. J. Chem. Theory Comput. 10, 1302–1313 (2014)

    Article  Google Scholar 

  10. Hagen, S.J.: Solvent viscosity and friction in protein folding dynamics. Curr. Protein Pept. Sci. 11, 385–395 (2010)

    Article  Google Scholar 

  11. Klimov, D.K., Thirumalai, D.: Viscosity dependence of folding rates of protein. Phys. Rev. Lett. 79, 317–320 (1997)

    Article  Google Scholar 

  12. Levy, Y., Onuchic, J.N.: Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 35, 389–415 (2006)

    Article  Google Scholar 

  13. Li, B., Sun, H., Zhou, S.: Stability of a cylindrical solute–solvent interface: effect of geometry, electrostatics, and hydrodynamics. SIAM J. Appl. Math. 75, 907–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Z., Cai, Q., Zhao, H., Luo, R.: A semi-implicit augmented IIM for Navier–Stokes equations with open and traction boundary conditions. J. Comput. Phys. 297, 182–193 (2015)

    Article  MathSciNet  Google Scholar 

  15. Roux, B., Simonson, T.: Implicit solvent models. Biophys. Chem. 78, 1–20 (1999)

    Article  Google Scholar 

  16. Schneider, S.W., Nuschele, S., Wixforth, A., Gorzelanny, C., Alexander-Katz, A., Netz, R.R., Schneider, M.F.: Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. USA 104, 7899–7903 (2007)

    Article  Google Scholar 

  17. Sekhar, A., Latham, M.P., Vallurupalli, P., Kay, L.E.: Viscosity-dependent kinetics of protein conformational exchange: microviscosity effects and the need for a small viscogen. J. Phys. Chem. B 118, 4546–4551 (2014)

    Article  Google Scholar 

  18. Setny, P., Wang, Z., Cheng, L.T., Li, B., McCammon, J.A., Dzubiella, J.: Dewetting-controlled binding of ligands to hydrophobic pockets. Phys. Rev. Lett. 103, 187801 (2009)

    Article  Google Scholar 

  19. Siedlecki, C.A., Lestini, B.J., Kottke-Marchant, K.K., Eppell, S.J., Wilson, D.L., Marchant, R.E.: Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 88, 2939–2950 (1996)

    Google Scholar 

  20. Singh, I., Themistou, E., Porcar, L., Neelamegham, S.: Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys. J. 96, 2313–2320 (2009)

    Article  Google Scholar 

  21. Szymczak, P., Cieplak, M.: Hydrodynamic effects in proteins. J. Phys.: Condens. Matter 23, 033102 (2011)

    Google Scholar 

  22. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Wiley, New York (1973)

    Google Scholar 

  23. Tomasi, J., Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994)

    Article  Google Scholar 

  24. Vergauwe, R.M.A., Uji-i, H., De Ceunynck, K., Vermant, J., Vanhoorelbeke, K., Hofkens, J.: Shear-stress-induced conformational changes of von Willebrand factor in water-glycerol mixture observed with single molecule microscopy. J. Phys. Chem. B 118, 5660–5669 (2014)

    Article  Google Scholar 

  25. Wang, Z., Che, J., Cheng, L., Dzubiella, J., Li, B., McCammon, J.A.: Level-set variational implicit-solvent modeling of biomolecules with the coulomb-field approximation. J. Chem. Theory Comput. 8, 386–397 (2012)

    Article  Google Scholar 

  26. White, M.: Mathematical Theory and Numerical Methods for Biomolecular Modeling. PhD thesis, University of California, San Diego (2015)

  27. Xiao, L., Cai, Q., Li, Z., Zhao, H., Luo, R.: A multi-scale method for dynamics simulation in continuum solvents I: finite-difference algorithm for Navier-Stokes equation. Chem. Phys. Lett. 616, 67–74 (2014)

    Article  Google Scholar 

  28. Zhou, S., Cheng, L., Sun, H., Che, J., Dzubiella, J., Li, B., McCammon, J.A.: LS-VISM: a software package for analysis of biomolecular solvation. J. Comput. Chem. 36, 1047–1059 (2015)

    Article  Google Scholar 

  29. Zhou, S., Cheng, L.-T., Dzubiella, J., Li, B., McCammon, J.A.: Variational implicit solvation with Poisson–Boltzmann theory. J. Chem. Theory Comput. 10, 1454–1467 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Foundation (NSF) through grant DMS-1319731 and the US National Institutes of Health (NIH) through grant R01GM096188. Work in McCammon’s group is supported in part by NSF, NIH, HHMI, and NBCR. The authors thank Dr. Robert Krasny, Dr. Ray Luo, and Mr. Li Xiao for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Appendix

Appendix

In the appendix, we provide details of the ghost fluid discretization on the interface. First of all, with the notations \(\mathbf{n}=(n_1,n_2)\) and \({\varvec{\tau }}=(-n_2,n_1)\), the traction boundary conditions (2.4) read

$$\begin{aligned} {\left\{ \begin{array}{ll} 2n_1^2u_x+2n_1n_2(u_y+v_x)+2n_2^2v_y-p=f_{\perp },\\ -2n_1n_2u_x+(n_1^2-n_2^2)(u_y+v_x)+2n_1n_2v_y=f_{\parallel }, \end{array}\right. } \end{aligned}$$

where \(f_{\perp }=\mathbf{f}\cdot \mathbf{n}\) and \(f_{\parallel }=\mathbf{f}\cdot {\varvec{\tau }}\). Some straightforward algebraic calculations together with the incompressibility condition (2.2) lead to

$$\begin{aligned}&2u_x-(n_1^2-n_2^2)p=(n_1^2-n_2^2)f_{\perp }-2n_1n_2f_{\parallel }, \end{aligned}$$
(6.1)
$$\begin{aligned}&2(n_2^2-n_1^2)v_y+2n_1n_2(u_y+v_x)-p=f_{\perp }. \end{aligned}$$
(6.2)

For any ghost velocity point \(\mathbf{x}\), we find a point \(\mathbf{x}^*\in \Gamma \), such that \(|\mathbf{x}-\mathbf{x}^*|=dist(\mathbf{x},\Gamma )\). We call \(\mathbf{x}^*\) a projection point of \(\mathbf{x}\) onto \(\Gamma \). We then discretize Eq. (6.1) at each projection point \(\mathbf{x}^*_{i-1/2,j}\) corresponding to each ghost velocity point \(\mathbf{x}_{i-1/2,j}\) of u. Similarly, we discretize Eq. (6.2) at each projection point \(\mathbf{x}^*_{i,j-1/2}\) corresponding to each ghost velocity point \(\mathbf{x}_{i,j-1/2}\) of v.

To obtain a second-order convergence scheme for u, v, and p up to \(\Gamma \), we design a third-order discretization of \(u_x\), \(u_y\), \(v_x\), \(v_y\), and p in the fluid region. This requires 10 stencil points for u, v, and 6 stencil points for p. We denote by \(S(u,\mathbf{x}^*,r)\), \(S(v,\mathbf{x}^*,r)\), and \(S(p,\mathbf{x}^*,r)\) respectively, the sets of u, v and p stencil points for discretizing \(\nabla u\), \(\nabla v\) and p with an order r at the projection point \(\mathbf{x}^*_{i,j-1/2}\). Then

$$\begin{aligned} |S(u,\mathbf{x}^*,r)|=\frac{(r+1)(r+2)}{2},\ |S(v,\mathbf{x}^*,r)|=\frac{(r+1)(r+2)}{2},\ \text { and } |S(p,\mathbf{x}^*,r)|=\frac{r(r+1)}{2}. \end{aligned}$$

In choosing these stencil points, we follow three criteria: (1) Each of these stencil points needs to be either a ghost point or a fluid point; (2) The stencil points need to include \(\mathbf{x}\), that is \(\mathbf{x}\!\in \! S(u,\mathbf{x}^*,r)\!\cup \! S(v,\mathbf{x}^*,r)\!\cup \! S(p,\mathbf{x}^*,r)\); (3) All \(S(u,\mathbf{x}^*,r)\), \(S(v,\mathbf{x}^*,r)\), and \(S(p,\mathbf{x}^*,r)\) satisfy

$$\begin{aligned} {\left\{ \begin{array}{ll} max\{i: \mathbf{x}_{i,j}\in S(u,\mathbf{x}^*,r)\}-min\{i: \mathbf{x}_{i,j}\in S(u,\mathbf{x}^*,r)\}=r,\\ max\{j: \mathbf{x}_{i,j}\in S(u,\mathbf{x}^*,r)\}-min\{j: \mathbf{x}_{i,j}\in S(u,\mathbf{x}^*,r)\}=r,\\ max\{i: \mathbf{x}_{i,j}\in S(v,\mathbf{x}^*,r)\}-min\{i: \mathbf{x}_{i,j}\in S(v,\mathbf{x}^*,r)\}=r,\\ max\{j: \mathbf{x}_{i,j}\in S(v,\mathbf{x}^*,r)\}-min\{j: \mathbf{x}_{i,j}\in S(v,\mathbf{x}^*,r)\}=r,\\ max\{i: \mathbf{x}_{i,j}\in S(p,\mathbf{x}^*,r)\}-min\{i: \mathbf{x}_{i,j}\in S(p,\mathbf{x}^*,r)\}=r-1,\\ max\{j: \mathbf{x}_{i,j}\in S(p,\mathbf{x}^*,r)\}-min\{j: \mathbf{x}_{i,j}\in S(p,\mathbf{x}^*,r)\}=r-1. \end{array}\right. } \end{aligned}$$
(6.3)

The criterion (3) is important for the invertibility of matrix A in Eq. (6.4), as shall be discussed later.

We now describe the process of constructing \(S(u,\mathbf{x}^*,r)\), \(S(v,\mathbf{x}^*,r)\), and \(S(p,\mathbf{x}^*,r)\), and the corresponding schemes. In this process, we use the following notations

$$\begin{aligned} (\lambda _1h_x, \lambda _2h_y)=\mathbf{x}^*-\mathbf{x},\quad (s_1, s_2)=(\mathrm{sign}(\lambda _1),\mathrm{sign}(\lambda _2)). \end{aligned}$$

It is easy to see that \(|\lambda _1|<1\) and \(|\lambda _2|<1\). Since a ghost point is a neighbor to a fluid point, at least one of its neighbor needs to be in \(\Omega _+\). We name a neighbor of \(\mathbf{x}\) a check point, if that neighbor point is in \(\Omega _+\). There are totally six different cases for the combination of ghost point and check point: (a) \(\mathbf{x}=\mathbf{x}_{i-1/2,j}\) and \(\phi (\mathbf{x}_{i-1/2+s_1,j})>0\); (b) \(\mathbf{x}=\mathbf{x}_{i-1/2,j}\) and \(\phi (\mathbf{x}_{i-1/2,j+s_2})>0\); (c) \(\mathbf{x}=\mathbf{x}_{i-1/2,j}\) and \(\phi (\mathbf{x}_{i-1/2+s_1/2,j+s_2/2})>0\); (d) \(\mathbf{x}=\mathbf{x}_{i,j-1/2}\) and \(\phi (\mathbf{x}_{i+s_1,j-1/2})>0\); (e) \(\mathbf{x}=\mathbf{x}_{i,j-1/2}\) and \(\phi (\mathbf{x}_{i,j-1/2+s_2})>0\); (f) \(\mathbf{x}=\mathbf{x}_{i,j-1/2}\) and \(\phi (\mathbf{x}_{i+s_1/2,j-1/2+s_2/2})>0\). For each of these cases, we obtain the corresponding \(S(u,\mathbf{x}^*,r)\), \(S(v,\mathbf{x}^*,r)\), and \(S(p,\mathbf{x}^*,r)\) with \(r\in \{1, 2, 3\}\). In Fig. 12, we schematically plot all six cases and the corresponding \(S(u,\mathbf{x}^*,r)\), \(S(v,\mathbf{x}^*,r)\), and \(S(p,\mathbf{x}^*,r)\) for \(r=3\). Notice that for cases (a)–(c), Eq. (6.1) is discretized, and \(S(v,\mathbf{x}^*,r)\) is not needed.

Fig. 12
figure 12

Different cases of combination of a ghost point and a check point

We now describe the steps of constructing a third-order discretization scheme for case (a), whereas all other cases just follow tediously. We consider a u ghost point \(\mathbf{x}_{i-1/2,j}\) with its projection point \(\mathbf{x}^*\). Let us denote

$$\begin{aligned} \mathbf{X}=\left( \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9\right) ^T=\left( \mathbf{x}_{i-\frac{1}{2},j}, \mathbf{x}_{i-\frac{1}{2}+s_1,j}, \mathbf{x}_{i-\frac{1}{2}-s_1,j+s_2}, \mathbf{x}_{i-\frac{1}{2},j+s_2}, \right. \\ \left. \mathbf{x}_{i-\frac{1}{2}+s_1,j+s_2}, \mathbf{x}_{i-\frac{1}{2}+2s_1,j+s_2}, \mathbf{x}_{i-\frac{1}{2},j+2s_2}, \mathbf{x}_{i-\frac{1}{2}+s_1,j+2s_2}, \mathbf{x}_{i-\frac{1}{2}+2s_1,j+2s_2}, \mathbf{x}_{i-\frac{1}{2},j+3s_2}\right) ^T, \end{aligned}$$

and \(\mathbf{F}=\left( u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}, u_{xxx}, u_{xyy}, u_{xxy}, u_{yyy}\right) ^T\), where \((\cdot )^T\) denotes transpose. Then a third-order Taylor expansion leads to a linear system \(\mathbf{X}=A\mathbf{F}(\mathbf{x}^*)\), where

$$\begin{aligned} A= \left[ \begin{array}{cccccccccc}1 &{} h_{x,1} &{} h_{y,1} &{} h^2_{x,1}/2 &{} h_{x,1}h_{y,1} &{} h^{2}_{y,1}/2 &{} h^3_{x,1}/6 &{} h^2_{x,1}h_{y,1}/2 &{} h_{x,1}h^2_{y,1}/2 &{} h^3_{y,1}/6 \\ 1 &{} h_{x,2} &{} h_{y,2} &{} h^2_{x,2}/2 &{} h_{x,2}h_{y,2} &{} h^{2}_{y,2}/2 &{} h^3_{x,2}/6 &{} h^2_{x,2}h_{y,2}/2 &{} h_{x,2}h^2_{y,2}/2 &{} h^3_{y,2}/6 \\ 1 &{} h_{x,3} &{} h_{y,3} &{} h^2_{x,3}/2 &{} h_{x,3}h_{y,3} &{} h^{2}_{y,3}/2 &{} h^3_{x,3}/6 &{} h^2_{x,3}h_{y,3}/2 &{} h_{x,3}h^2_{y,3}/2 &{} h^3_{y,3}/6 \\ 1 &{} h_{x,4} &{} h_{y,4} &{} h^2_{x,4}/2 &{} h_{x,4}h_{y,4} &{} h^{2}_{y,4}/2 &{} h^3_{x,4}/6 &{} h^2_{x,4}h_{y,4}/2 &{} h_{x,4}h^2_{y,4}/2 &{} h^3_{y,4}/6 \\ 1 &{} h_{x,5} &{} h_{y,5} &{} h^2_{x,5}/2 &{} h_{x,5}h_{y,5} &{} h^{2}_{y,5}/2 &{} h^3_{x,5}/6 &{} h^2_{x,5}h_{y,5}/2 &{} h_{x,5}h^2_{y,5}/2 &{} h^3_{y,5}/6 \\ 1 &{} h_{x,6} &{} h_{y,6} &{} h^2_{x,6}/2 &{} h_{x,6}h_{y,6} &{} h^{2}_{y,6}/2 &{} h^3_{x,6}/6 &{} h^2_{x,6}h_{y,6}/2 &{} h_{x,6}h^2_{y,6}/2 &{} h^3_{y,6}/6 \\ 1 &{} h_{x,7} &{} h_{y,7} &{} h^2_{x,7}/2 &{} h_{x,7}h_{y,7} &{} h^{2}_{y,7}/2 &{} h^3_{x,7}/6 &{} h^2_{x,7}h_{y,7}/2 &{} h_{x,7}h^2_{y,7}/2 &{} h^3_{y,7}/6 \\ 1 &{} h_{x,8} &{} h_{y,8} &{} h^2_{x,8}/2 &{} h_{x,8}h_{y,8} &{} h^{2}_{y,8}/2 &{} h^3_{x,8}/6 &{} h^2_{x,8}h_{y,8}/2 &{} h_{x,8}h^2_{y,8}/2 &{} h^3_{y,8}/6 \\ 1 &{} h_{x,9} &{} h_{y,9} &{} h^2_{x,9}/2 &{} h_{x,9}h_{y,9} &{} h^{2}_{y,9}/2 &{} h^3_{x,9}/6 &{} h^2_{x,9}h_{y,9}/2 &{} h_{x,9}h^2_{y,9}/2 &{} h^3_{y,9}/6 \\ \end{array}\right] , \end{aligned}$$
(6.4)

with \((h_{x,k}, h_{y,k}):=\mathbf{x}_k-\mathbf{x}^*\). A sufficient condition to have A invertible is (6.3). Inverting A symbolically, we get \(\mathbf{F}(\mathbf{x}^*)=A^{-1}\mathbf{X}\), and the second entry of \(\mathbf{F}(\mathbf{x}^*)\) corresponds to a third-order discretization of \(u_x(\mathbf{x}^*)\):

$$\begin{aligned}&u_x(\mathbf{x}^*)=-\frac{(\lambda _2-s_2)(\lambda _2-2s_2)}{2s_1h_x}u_0+\frac{(\lambda _2-s_2)(\lambda _2-2s_2)}{2s_1h_x}u_1-\frac{3\lambda _1^2-6\lambda _1s_1+2}{6s_1h_x}u_2\\&\quad -\frac{s_1(\lambda _1+\lambda _1\lambda _2 s_2)+3\lambda _2s_2/2-\lambda _2^2-3\lambda _1^2/2}{s_1h_x}u_3\\&\quad -\frac{s_1(\lambda _1-2\lambda _1\lambda _2 s_2)+\lambda _2^2- \lambda _2s_2-1+3\lambda _1^2/2}{s_1h_x}u_4\\&\quad +\frac{\lambda _2/2-2s_2/3+\lambda _1^2s_2/2-s_1\lambda _1\lambda _2+s_1\lambda _1s_2}{s_1s_2h_x}u_5-\frac{(\lambda _2-s_2)(\lambda _2s_1-2\lambda _1s_2+s_1s_2)}{2h_x}u_6\\&\quad +\frac{(\lambda _2-s_2)(\lambda _2s_1-4\lambda _1s_2+2s_1s_2)}{2h_x}u_7+\frac{(\lambda _2-s_2)(2\lambda _1-s_1)}{2s_2h_x}u_8, \end{aligned}$$

where the notation \(u(\mathbf{X})=\left( u_0, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9 \right) ^T\) is used. The third entry of \(\mathbf{F}(\mathbf{x}^*)^t\) gives a third-order discretization of \(u_y(\mathbf{x}^*)\). However, it is not necessary in discretizing Eq. (6.1).

Similarly, one can derive a third-order discretization scheme for \(p(\mathbf{x}^*)\):

$$\begin{aligned}&p(\mathbf{x}^*)=\left( \frac{3}{8}-\lambda _1s_1+\frac{\lambda _1^2}{2}\right) p_0-\frac{(2\lambda _1-3s_1)(2\lambda _1s_2-2\lambda _2s_1+3s_1s_2)}{4s_2}p_1\\&\quad +\frac{((2\lambda _1s_2 - 2\lambda _2s_1 + s_1s_2)(2\lambda _1s_2 - 2\lambda _2s_1 + 3s_1s_2))}{8}p_2-\frac{(\lambda _2 - s_2)(2\lambda _1 - 3s_1)}{2s_1s_2}p_3\\&\quad +\frac{(\lambda _2 - s_2)(2\lambda _1s_2 - 2\lambda _2s_1 + 3s_1s_2)}{2*s_1}p_4+\frac{(\lambda _2 - s_2)(\lambda _2 - 2s_2)}{2}p_5, \end{aligned}$$

where \(p_0=p(\mathbf{x}_{i-\frac{s_1+1}{2},j+s_2})\), \(p_1=p(\mathbf{x}_{i+\frac{s_1-1}{2},j+s_2})\), \(p_2=p(\mathbf{x}_{i+\frac{3s_1-1}{2},j+s_2})\), \(p_3=p(\mathbf{x}_{i+\frac{s_1-1}{2},j+2s_2})\), \(p_4=p(\mathbf{x}_{i+\frac{3s_1-1}{2},j+2s_2})\), \(p_5=p(\mathbf{x}_{i+\frac{3s_1-1}{2},j+3s_2})\).

We use this symbolic inverse matrix method to find a third-order scheme for discretizing Eq. (6.1) around \(\mathbf{x}^*\). To find a second-order or first-order scheme, we form a smaller matrix A by applying a second or first-order Taylor expansion to \(u(\mathbf{x}_k)\), \(v(\mathbf{y}_k)\), and \(p(\mathbf{z}_k)\) at \(\mathbf{x}^*\), with \(\mathbf{x}_k\in S(u,\mathbf{x}^*,r)\), \(\mathbf{y}_k\in S(v,\mathbf{x}^*,r)\), and \(\mathbf{z}_k\in S(p,\mathbf{x}^*,r)\), respectively. Using similar computations, we are able to construct the first, second, and third-order schemes for all six cases (a)–(f), but we do not need to record the ten-page formulas here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhou, S., Moore, D.K. et al. Numerical Treatment of Stokes Solvent Flow and Solute–Solvent Interfacial Dynamics for Nonpolar Molecules. J Sci Comput 67, 705–723 (2016). https://doi.org/10.1007/s10915-015-0099-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0099-z

Keywords

Navigation