Skip to main content

Advertisement

Log in

Coevolution of Tooth Crown Height and Diet in Oreodonts (Merycoidodontidae, Artiodactyla) Examined with Phylogenetically Independent Contrasts

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

The evolution of increased tooth crown height is considered to be an adaptation for coping with excessive rates of dental wear associated with abrasive herbivorous diets, such as grazing and(or high levels of exogenous grit (e.g. dust, sand, ash). Evolutionary trends in the crown heights of North American ungulates are grossly consistent with a transition from closed forests in the early Eocene to open grasslands in the late Miocene. However, the evolutionary proliferation of hypsodonty (high crowned teeth) in the early and middle Miocene occurs later than the apparent origin of open grassland habitats in North America. The paleoecology of species from the interval between the appearance of grasslands and the evolutionary proliferation of hypsodonty is critical to understanding the role of Cenozoic climate change in mammalian evolution. The paleodiets of late Eocene to middle Miocene oreodonts (Merycoidodontidae) were reconstructed by examining the relative facet development of molars (mesowear). A two-phase diet trend was discovered. Phase 1 suggests either an average reduction in the amount of exogenous grit from the late Eocene to early Oligocene or a decrease in fruit consumption related to the disappearance of more wooded habitats. Phase 2 is a gradual transition from early Oligocene low-abrasion browsing to high abrasion diets similar to mixed feeding and grazing in the Miocene. According to mesowear data, oreodont diets similar to those of modern grazers in terms of abrasion are not seen until the early Miocene (early Hemingfordian land mammal age). The coevolutionary relationship of molar crown height and diet, as represented by mesowear, was examined using phylogenetically independent contrasts. No significant coevolutionary relationship was found. In several instances, diet was found to shift over time despite morphological stasis (i.e. within a single species). These results do not clearly indicate that the overall trend of increasing dietary abrasion imposed sufficient selection to drive crown height evolution in oreodonts. Therefore, direct fossil evidence of dietary abrasion as a causal factor in the evolution of crown height, at least in this clade, is elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

LITERATURE CITED

  • Bell, R. H. V. (1971). A grazing ecosystem in the Serengeti. Sci. Am. 225: 86–93.

    Article  Google Scholar 

  • Berggren, W. A., and Prothero, D. R. (1992). Eocene–Oligocene climatic and biotic evolution: An overview. In: Eocene-Oligocene Climatic and Biotic Evolution, D. R. Prothero and W. A. Berggren, eds., pp. 1–28, Princeton University Press, Princeton, NJ.

  • Damuth, J., and MacFadden, B. J. (1990). Body Size in Mammalian Paleobiology: Estimation and Biological Implications, Cambridge University Press, Cambridge.

  • Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G., and Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): Estimation and scaling in extinct and extant taxa. Am. Mus. Nat. Hist. Anthropol. Pap. 83: 1–159.

    Google Scholar 

  • Díaz-Uriarte, R., and Garland, T. (1996). Testing hypotheses of correlated evolution using phylogenetically independent contrasts: Sensitivity to deviations from Brownian motion. Syst. Biol. 45: 27–47.

    Article  Google Scholar 

  • Díaz-Uriarte, R., and Garland, T. (1998). Effects of branch length errors in the performance of phylogenetically independent contrasts. Syst. Biol. 47: 654–672.

    Article  PubMed  Google Scholar 

  • Eltringham, S. K. (1999). The Hippos: Natural History and Conservation, Academic Press, London.

  • Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125: 1–15.

    Article  Google Scholar 

  • Feranec, R. S. (2003). Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): A morphological specialization creating ecological generalization. Paleobiology 29: 230–242.

    Article  Google Scholar 

  • Feranec, R. S. (2004). Geographic variation in the diet of hypsodont herbivores from the Rancholabrean of Florida. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162: 359–369.

    Article  Google Scholar 

  • Feranec, R. S., and MacFadden, B. J. (2000). Evolution of the grazing niche in Pleistocene mammals from Florida: Evidence from stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162: 155–169.

    Article  Google Scholar 

  • Fortelius, M. (1985). Ungulate cheek teeth: Developmental, functional, and evolutionary interrelations. Act. Zool. Fenn. 180: 1–76.

    Google Scholar 

  • Fortelius, M., and Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrision wear gradient: A new method for reconstructing paleodiets. Am. Mus. Novit. 3301: 1–36.

    Article  Google Scholar 

  • Franz-Odendaal, T. A., and Kaiser, T. M. (2003). Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Ann. Zool. Finn. 40: 395–410.

    Google Scholar 

  • Garland, T., Harvey, P. H., and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 18–32.

    Article  Google Scholar 

  • Garland, T., and Ives, A. R. (2000). Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155: 346–364.

    Article  Google Scholar 

  • Garland, T., and Janis, C. M. (1993). Does metatarsal(femur ratio predict maximal running speed in cursorial mammals? Zool. J. 229: 133–151.

    Article  Google Scholar 

  • Garland, T., Midford, P. E., and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral states. Am. Zool. 39: 374–388.

    Google Scholar 

  • Gould, S. J. (2002). The Structure of Evolutionary Theory, Harvard University Press, Cambridge, MA.

  • Grafen, A. (1989). The phylogenetic regression. Philos. Trans. Roy. Soc. Lond. B 326: 119–157.

    Article  CAS  Google Scholar 

  • Hansen, T. F., and Martins, E. P. (1996). Translating between microevolutionary process and macroevolutionary patterns: The correlation structure of interspecific data. Evolution 50: 1404–1417.

    Article  Google Scholar 

  • Harvey, P. H., and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.

  • Jacobs, B. F., Kingston, J. D., and Jacobs, L. L. (1999). The origin of grassland dominated ecosystems. Ann. Missouri Bot. Gard. 86: 590–643.

    Article  Google Scholar 

  • Janis, C. M. (1982). Evolution of horns in ungulates: Ecology and paleoecology. Biol. Rev. 57: 261–318.

    Article  Google Scholar 

  • Janis, C. M. (1988). Estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. Mus. Natl. Hist. Nat. Memoir sér. C 53: 367–387.

    Google Scholar 

  • Janis, C. M. (1989). A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32: 463–481.

    Google Scholar 

  • Janis, C. M. (1990). The correlation between diet and dental wear in herbivorous mammals, and its dental relationship to the determination of diets in extinct species. In: Evolutionary Paleobiology of Behavior and Coevolution, J. Boucot, ed., pp. 241–260, Elesvier, Amsterdam.

  • Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Ann. Rev. Ecol. Syst. 24: 467–500.

    Article  Google Scholar 

  • Janis, C. M. (1997). Ungulate teeth, diets, and climatic changes at the Eocene(Oligocene boundary. Zoology 100: 203–220.

    Google Scholar 

  • Janis, C. M. (2000). Patterns in the evolution of herbivory in large terrestrial mammals: The Paleogene of North America. In: Evolution of Herbivory in Terrestrial Vertebrates, H. D. Sues, ed., pp. 168–222, Cambridge University Press, Cambridge.

  • Janis, C. M., Damuth, J., and Theodor, J. M. (2000). Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone? Proc. Natl. Acad. Sci. U.S.A. 97: 7899–7904.

    Article  PubMed  CAS  Google Scholar 

  • Janis, C. M., Damuth, J., and Theodor, J. M. (2002). The origins and evolution of the North American grassland biome: The story from hoofed mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177: 183–198.

    Article  Google Scholar 

  • Janis, C. M., Damuth, J., and Theodor, J. M. (2004). The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207: 371–398.

    Article  Google Scholar 

  • Janis, C. M., Scott, K. M., and Jacobs, L. L. (1998). Evolution of Tertiary Mammals of North America. Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, Cambridge University Press, Cambridge.

  • Kaiser, T. M., and Fortelius, M. (2003). Differential mesowear in occluding upper and lower molars: Opening mesowear analysis for lower molars and premolars in hypsodont equids. Morphol. J. 258: 67–83.

    Article  Google Scholar 

  • Kaiser, T. M., and Solounias, N. (2003). Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25: 321–345.

    Google Scholar 

  • Kaiser, T. M., Solounias, N., Fortelius, M., Bernor, R. L., and Schrenk, F. (2000). Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany)—A blind test study. Carolinea 58: 103–114.

    Google Scholar 

  • Koch, P. L., Hoppe, K. A., and Webb, S. D. (1998). The isotopic ecology of late Pleistocene mammals in North America. Part 1. Florida. Chem. Geol. 152: 119–138.

    Article  CAS  Google Scholar 

  • LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 20: 97–117.

    Article  Google Scholar 

  • Lander, B. (1998). Oreodontoidea. In: Evolution of Tertiary Mammals of North America. Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, C. M. Janis, K. M. Scott, and L. L. Jacobs, eds., pp. 402–425, Cambridge University Press, Cambridge.

  • Leroi, A. M., Rose, M. R., and Lauder, G. V. (1994). What does the comparative method reveal about adaptation? Am. Nat. 143: 381–402.

    Article  Google Scholar 

  • MacFadden, B. J. (2000a). Origin and evolution of the grazing guild in Cenozoic New World terrestrial mammals. In: Evolution of Herbivory in Terrestrial Vertebrates, H. D. Sues, ed., pp. 223–244, Cambridge University Press, Cambridge.

  • MacFadden, B. J. (2000b). Cenozoic mammalian herbivores from the Americas: Reconstructing ancient diets and terrestrial communities. Ann. Rev. Ecol. Syst. 31: 33–59.

    Article  Google Scholar 

  • Martins, E. P., and Garland, T. (1991). Phylogentic analysis of the correlated evolution of continuous characters: A simulation study. Evolution 45: 534–557.

    Article  Google Scholar 

  • Martins, E. P., and Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149: 646–667.

    Article  Google Scholar 

  • Martins, E. P., and Housworth, E. A. (2002). Phylogeny shape and the phylogenetic comparative method. Syst. Biol. 51: 873–880.

    Article  PubMed  Google Scholar 

  • Matthew, W. D. (1939). Climate and evolution, 2nd edn. Spec. Publ. N. Y. Acad. Sci. 1: 1–223.

    Google Scholar 

  • Mendoza, M., Janis, C. M., and Palmqvist, P. (2002). Characterizing complex craniodental patterns related to feeding behaviour in ungulates: A multivariate approach. Zool. J. Lond. 258: 223–246.

    Article  Google Scholar 

  • Mihlbachler, M. C., and Solounias, N. (2002). Body size, dental microwear, and brontothere diets through the Eocene. Vertebr. J. Paleontol. 22: 88A.

    Google Scholar 

  • Nowak, R. M. (1999). Mammals of the World, 6th edn., Johns Hopkins, Baltimore.

  • O'Gara, B. W. (1978). Antilocapra americana. Mammal. Species 90: 1–7.

    Article  Google Scholar 

  • Osborn, H. F. (1910). The Age of Mammals, MacMillan, New York.

  • Perez-Barberia, F. J., Gordon, I. J., and Nores, C. (2001). Evolutionary transitions among feeding styles and habitats in ungulates. Evol. Ecol. Res. 3: 221–230.

    Google Scholar 

  • Prothero, D. R. (1994). The Eocene–Oligocene Transition: Paradise Lost, Columbia University Press, New York.

  • Prothero, D. R. (1999). Does climate change drive mammalian evolution? GSA Today 9: 2–7.

    Google Scholar 

  • Prothero, D. R. (2004). Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeogr. Palaeoclimatol. Palaeoecol. 214: 283–294.

    Google Scholar 

  • Prothero, D. R., and Heaton, T. H. (1996). Faunal stability during the early Oligocene climatic crash. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 257–283.

    Article  Google Scholar 

  • Retallack, G. J. (1992). Paleosols and changes in climate and vegetation across the Eocene(Oligocene boundary. In: Eocene–Oligocene Climatic and Biotic Evolution, D. R. Prothero and W. A. Berggren, eds., pp. 382–398, Princeton University Press, Princeton, NJ.

  • Retallack, G. J. (1997). Neogene expansion of the North American prairie. Palaios 12: 380–390.

    Article  Google Scholar 

  • Retallack, G. J. (2004). Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207: 203–237.

    Article  Google Scholar 

  • Rivals, F., and Solounias, N. (2004). Bison dietary changes in North America during the Pleistocene–Holocene transition. Vertebr. J. Paleontol. 24: 104A.

    Google Scholar 

  • Sánchez, B., Prado, J. L., and Alberdi, M. T. (2004). Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30: 146–161.

    Article  Google Scholar 

  • Schultz, C. B., and Falkenbach, C. H. (1968). The phylogeny of the Oreodonts. Bull. Am. Mus. Nat. Hist. 139: 1–498.

    Google Scholar 

  • Semprebon, G., Janis, C., and Solounias, N. (2004). The diets of the Dromomerycidae (Mammalia: Artiodactyla) and their response to Miocene vegetational change. Vertebr. J. Paleontol. 24: 427–444.

    Article  Google Scholar 

  • Simpson, G. G. (1953). The Major Features of Evolution, Columbia University Press, New York.

  • Smith, R. J. (2002). Estimation of body mass in paleontology. Hum. J. Evol. 43: 271–287.

    Article  Google Scholar 

  • Solounias, N., Fortelius, M., and Freeman, P. (1994). Molar wear rates in ruminants: A new approach. Ann. Zool. Fenn. 31: 219–227.

    Google Scholar 

  • Solounias, N., McGraw, W. S., Hayek, L., and Werdelin, L. (2000). The paleodiet of the Giraffidae. In: Antelopes, Deer, and Relatives: Fossil Record, Behavioral Ecology, Systematics, and Conservation, E. S. Vrba and G. B. Schaller, eds., pp. 84–95, Yale University Press, New Haven, CT.

  • Solounias, N., Mihlbachler, M. C., Rivals, F., Blondel, C., and Guthrie, D. (2004). Evaluation of diet in mammoths and other late Pleistocene and early Holocene Ungulates from Alaska. Vertebr. J. Paleontol. 24: 116A.

    Google Scholar 

  • Solounias, N., Plavcan, J. M., Quade, J., and Witmer, L. (1999). The paleoecology of the Pikermian Biome and the savanna myth. In: Evolution of the Neogene Terrestrial Ecosystems in Europe, J. Agusti, P. Andrews, and L. Rook, eds., pp. 427–444, Cambridge University Press, Cambridge.

  • Solounias, N., and Semprebon, G. (2002). Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am. Mus. Novit. 3366: 1–49.

    Article  Google Scholar 

  • Solounias, N., Teaford, M., and Walker, A. (1988). Interpreting the diet of extinct ruminants: The case of a non-browsing giraffid. Paleobiology 14: 287–300.

    Google Scholar 

  • Stevens, M. S., and Stevens, J. B. (1996). Merycoidodontinae and Miniochoerinae. In: The Terrestrial Eocene–Oligocene Transition in North America, D. R. Prothero and R. J. Emry, eds., pp. 498–573, Cambridge University Press, Cambridge.

  • Stirton, R. A. (1947). Observation of evolutionary rates in hypsodonty. Evolution 1: 32–41.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2002). The origin and spread of grass-dominated ecosystems in the late Teritary of North America: Preliminary results concerning the evolution of hypsodonty. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177: 59–75.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2004a). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207: 239–275.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2004b). The ‘Great Transformation’ and evolution of hypsodonty in equids: Testing a hypothesis of adaptation. Vertebr. J. Paleontol. 24: 119A.

    Google Scholar 

  • Webb, S. D. (1977). A history of savanna vertebrates in the New World. Part I: North America. Ann. Rev. Ecol. Syst. 8: 355–380.

    Article  Google Scholar 

  • Webb, S. D. (1983). The rise and fall of the late Miocene ungulate fauna in North America. In: Coevolution, M. H. Nitecki, ed., pp. 267–306, University of Chicago Press, Chicago.

  • Webb, S. D. (1989). The fourth dimension in North American terrestrial mammal communities. In: Patterns in the Structure of Mammalian Communities, D. W. Morris, Z. Abramsky, B. J. Fox, and M. R. Willig, eds., Spec. Publ. 28: 181–203, Museum of Texas Tech University, Lubbock.

  • Webb, S. D., Hulbert, R. C., and Lambert, W. D. (1995). Climatic implications of large-herbivore distributions in the Miocene of North America. In: Paleoclimate and Evolution: With Emphasis on Human Origins, E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle, eds., pp. 91–108, Yale University Press, New Haven, CT.

  • Webb, S. D., and Opdyke, N. D. (1995). Global Climatic Influence on Cenozoic Land Mammal Faunas. In: Effects of Past Global Change on Life, Board on Earth Sciences and Resources, ed., pp. 184–208, National Academy Press, Washington, DC.

  • White, T. E. (1959). The endocrine glands and evolution, No. 3: Os cemetum, hypsodonty, and diet. Contrib. Mus. Paleont. Univ. Mich. 13: 211–265.

    Google Scholar 

  • Williams, S. H., and Kay, R. F. (2001). A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Mamm. J. Evol. 8: 207–229.

    Article  Google Scholar 

  • Wing, S. (1998). Tertiary vegetation of North America as a context for mammalian evolution. In: Evolution of Tertiary Mammals of North America. Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, C. M. Janis, K. M. Scott, and L. L. Jacobs, eds., pp. 37–60, Cambridge University Press, Cambridge.

  • Wing, S. L., and Tiffney, B. H. (1987). The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Rev. Palaeobot. Palyn. 50: 179–210.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper originated from a class project that the senior author undertook while in a seminar hosted by Paul Olsen on extinctions and geological boundaries at Columbia University. We thank Jin Meng and Denny Dively for access to the American Museum of Natural History fossil mammal collections, Theodore Garland provided the software needed to perform analysis of phylogenetically independent contrasts. Tom Rothwell assisted with some of the data analysis. Brian Beatty, Robert Feranec, Caroline Strömberg, and an anonymous reviewer provided comments that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Mihlbachler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihlbachler, M.C., Solounias, N. Coevolution of Tooth Crown Height and Diet in Oreodonts (Merycoidodontidae, Artiodactyla) Examined with Phylogenetically Independent Contrasts. J Mammal Evol 13, 11–36 (2006). https://doi.org/10.1007/s10914-005-9001-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-005-9001-3

KEY WORDS:

Navigation