Skip to main content

Advertisement

Log in

The Nipple: A Simple Intersection of Mammary Gland and Integument, but Focal Point of Organ Function

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Having glands that secrete milk to nourish neonatal offspring characterizes all mammals. We provide a brief overview of the development and anatomy of nipples and mammary glands in monotremes, marsupials, and marine mammals, and focus on the nipples and mammary glands in terrestrial eutherian species. We first classify eutherians into three groups: the altricial, precocial, and arboreal types based on their rearing system. We then summarize the physiology of lactation and the cell biology of nipples with specific focus on comparing these in the mouse, cow, and human, which represent the three different groups. Finally we propose that the nipple is an example of specialized epidermis. As specialized epidermis, it is dependent the underlying stroma for development and maintenance in adult life. The development of the nipple and signaling pathways that regulate its formation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenic protein

BMPR1A:

BMP receptor 1A

E:

Embryonic day

K:

Keratin

LGR7:

Leucine rich repeat containing G-protein coupled receptor

MSX2:

Msh homeobox 2

PTH:

Parathyroid hormone

PTHrP:

Parathyroid hormone-related protein

PTH1R:

Parathyroid hormone/parathyroid hormone-related protein receptor

References

  1. Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system? Bioessays. 2006;28:606–16.

    Article  PubMed  CAS  Google Scholar 

  2. McClellan HL, Miller SJ, Hartmann PE. Evolution of lactation: nutrition v. protection with special reference to five mammalian species. Nutr Res Rev. 2008;21:97–116.

    Article  PubMed  CAS  Google Scholar 

  3. Nowak R. Suckling, milk, and the development of preferences toward maternal cues by neonates: from early learning to filial attachment? In: Brockmann HJ, Slater PJB, Snowdon CT, editors. Advances in the Study of Behavior. San Diego: Academic Press; 2006. p. 1–58.

    Google Scholar 

  4. Schaal B. Mammary odor cues and pheromones” mammalian infant-directed communication about maternal state, mammae, and milk. Vitam Horm. 2010;83:83–136.

    Article  PubMed  Google Scholar 

  5. Logan EW, Brunet LJ, Webb WR, Cutforth T, Ngai J, Stowers L. Learned Recognition of maternal signature odors mediates the first suckling episode in mice. Curr Biol. 2012;22:1998–2007.

    Article  PubMed  CAS  Google Scholar 

  6. Pedersen CA. Biological aspects of social bonding and the roots of human violence. Ann NY Acad Sci. 2004;1036:106–27.

    Article  PubMed  Google Scholar 

  7. Moriceau S, Sullivan RM. Neurobiology of infant attachment. Dev Psychobiol. 2005;47:230–42.

    Article  PubMed  Google Scholar 

  8. Peaker M. The mammary gland in mammalian evolution: a brief commentary on some of the concepts. J Mammary Gland Biol Neoplasia. 2002;7(3):347–53.

    Article  PubMed  Google Scholar 

  9. Oftedal OT. The origin of lactation as a water source for parchment-shelled eggs. J Mammary Gland Biol Neoplasia. 2002;253–66.

  10. Griffiths M, McIntosh DL, Coles REA. The mammary gland of the echidna, Tachyglossus aculeatus’ with observations on the incubation of the egg and on the newly-hatched young. J Zool Lond. 1969;158:371–86.

    Article  CAS  Google Scholar 

  11. Findley L. The mammary glands of the tammar wallaby (Macropus eugenii) during pregnancy and lactation. J Reprod Fert. 1982;65(1):59–66.

    Article  Google Scholar 

  12. Brennan AJ, Sharp JA, Digby MR, Nicholas KR. The tammar wallaby: A model system to examine endocrine and local control of lactation. IUBMB Life. 2007;59(3):146–50.

    Article  PubMed  CAS  Google Scholar 

  13. Martinet J, Development of the mammary gland. In: Martinet J, Houdebine, LM, Head, HH editors. Biology of lactation Paris: Institut national de la recherche agronomique 1999: 347–60.

  14. Bocharev V and Cotsarelis G. Biology of Hair folicles. In: Goldsmith,L.A, Katz, SI, Gilchrest, BA, Paller, AS, Leffell DJ, Wolff K, editors Fitzpatrick’s Dermatology in General Medicine Hew York: McGraw-Hill; 2012 (web edition).

  15. Veltmaat JM, Mailleux AA, Theiry JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation. 2003;71:1–17.

    Article  PubMed  CAS  Google Scholar 

  16. Duverger, O and Morasso, MI. Epidermal patterning and induction of different hair types during mouse embryonic development

  17. Shoda Y. Animals made by Humans – Evolution as Domesticated Animals. Tokyo: Tokyo Shoseki; 1987.

    Google Scholar 

  18. Napier JR, Napier PH. The Natural History of the Primates. Cambridge: MIT Press; 1985.

    Google Scholar 

  19. Slijper E. Functional morphology of the reproductive system in Cetacea. In: Norris KS, editor. Whales, Dolphins, and porpoises. Berkeley and Los Angeles: Univ Calfornia Press; 1966. p. 278–319.

    Google Scholar 

  20. Neville MC, Morton J. Physiology and endocrine changes underlying human lactogenesis II. J Nutr. 2001;131:3005S–8S.

    PubMed  CAS  Google Scholar 

  21. Kuzbari R, Schlenz I. Reduction mammaplasty and sensitivity of the nipple-areola complex: sensuality versus sexuality? Ann Plast Surg. 2007;58:3–11.

    Article  PubMed  CAS  Google Scholar 

  22. Blass EM, Teicher MH. Suckling. Science. 1980;210:15–22.

    Article  PubMed  CAS  Google Scholar 

  23. Svennersten-Sjaunja K, Olsson K. Endocrinology of milk production. Domest Anim Endocrinol. 2005;29:241–58.

    Article  PubMed  CAS  Google Scholar 

  24. Algers B. Nursing in pigs: communicating needs and distributing resources. J Anim Sci. 1993;71:2826–31.

    PubMed  CAS  Google Scholar 

  25. Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, et al. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development. 2001;128:513–25.

    PubMed  CAS  Google Scholar 

  26. Giacometti L, Montagna W. The nipple and the areola of the human female breast. Anat Rec. 1962;144:191–97.

    Article  PubMed  CAS  Google Scholar 

  27. Montagna W. Histology and cytochemistry of human skin. XXXV: the nipple and areola. Br J Dermatol. 1970;83:2–13.

    Article  PubMed  Google Scholar 

  28. Helmboldt C, Jungherr EL, Plastridge WN. The Histophatology of Bovine Mastitis. Storrs Agricultural Experiment Station Paper. 1953;45:1–90. http://digitalcommons.uconn.edu/saes/45.

  29. Ambrose N, Lloyd D, Maillard JC. Immune responses to Dermatophilus congolensis infections. Parasitol Today. 1999;15:295–300.

    Article  PubMed  CAS  Google Scholar 

  30. Sakakura T. Mammary embryogenesis. In: Neville MC, Daniel CW, editors. The Mammary gland : development, regulation, and function. New York: Plenum Press; 1987. p. 37–66.

    Google Scholar 

  31. Abdalkhani A, Sellers R, Gent J, Wulitich H, Childress S, Stein B, et al. Nipple connective tissue and its development: insights from the K14-PTHrP mouse. Mech Dev. 2002;115:63–77.

    Article  PubMed  CAS  Google Scholar 

  32. Araco A, Araco F, Sorge R, Gravante G. Sensitivity of the nipple-areola complex and areolar pain following aesthetic breast augmentation in a retrospective series of 1200 patients: periareolar versus submammary incision. Plast Reconstr Surg. 2011;128:984–89.

    Article  PubMed  CAS  Google Scholar 

  33. Kobayashi T, Kronenberg HM, Foley J. Reduced expression of the PTH/PTHrP receptor during development of the mammary gland influences the function of the nipple during lactation. Dev Dyn. 2005;233:794–803.

    Article  PubMed  CAS  Google Scholar 

  34. Mahler B, Gocken T, Grojan M, Childress S, Spandau DF, Foley J. Keratin 2e: a marker for murine nipple epidermis. Cells Tissues Organs. 2004;176:169–77.

    Article  PubMed  CAS  Google Scholar 

  35. Eastwood J, Offutt C, Menon K, Keel M, Hrncirova P, Novotny MV, et al. Identification of markers for nipple epidermis: changes in expression during pregnancy and lactation. Differentiation. 2007;75:75–83.

    Article  PubMed  CAS  Google Scholar 

  36. Doucet S, Soussignan R, Sagot P, Schaal B. An overlooked aspect of the human breast: areolar glands in relation with breastfeeding pattern, neonatal weight gain, and the dynamics of lactation. Early Hum Dev. 2012;88:119–28.

    Article  PubMed  Google Scholar 

  37. Schaal B, Doucet S, Sagot P, Hertling E, Soussignan R. Human breast areolae as scent organs: morphological data and possible involvement in maternal-neonatal coadaptation. Dev Psychobiol. 2006;48:100–10.

    Article  PubMed  Google Scholar 

  38. Melo AI, Gonzalez-Mariscal G. Communication by olfactory signals in rabbits: its role in reproduction. Vitam Horm. 2010;83:351–71.

    Article  PubMed  CAS  Google Scholar 

  39. Schaal B, Coureaud G, Langlois D, Giniès C, Sémon E, Perrier G. Chemical and behavioural characterization of the rabbit mammary pheromone. Nature. 2003;424:68–72.

    Article  PubMed  CAS  Google Scholar 

  40. Gruet P, Maincent P, Berthelot X, Kaltsatos V. Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev. 2001;50:245–59.

    Article  PubMed  CAS  Google Scholar 

  41. Toker C. Clear cells of the nipple epidermis. Cancer. 1970;25:601–10.

    Article  PubMed  CAS  Google Scholar 

  42. Lundquist K, Kohler S, Rouse RV. Intraepidermal cytokeratin seven expression is not restricted to Paget cells but is also seen in Toker cells and Merkel cells. Am J Surg Pathol. 1999;23:212–19.

    Article  PubMed  CAS  Google Scholar 

  43. Nofech-Mozes S, Hanna W. Toker cells revisited. Breast J. 2009;15:394–98.

    Article  PubMed  Google Scholar 

  44. Seetharam S, Fentiman IS. Paget’s disease of the nipple. Womens Health (Lond Engl). 2009;5:397–402.

    Article  CAS  Google Scholar 

  45. Willman JH, Golitz LE, Fitzpatrick JE. Clear cells of Toker in accessory nipples. J Cutan Pathol. 2003;30:256–60.

    Article  PubMed  Google Scholar 

  46. Mackenzie IC, Hill MW. Connective tissue influences on patterns of epithelial architecture and keratinization in skin and oral mucosa of the adult mouse. Cell Tissue Res. 1984;235:551–59.

    Article  PubMed  CAS  Google Scholar 

  47. Schweizer J. Murine epidermal keratins. In: Darmon M, Blumenberg ML, editors. Molecular Biology of the Skin : the keratinocyte. Amsterdam: Academic Press; 1993. p. 33–78.

    Google Scholar 

  48. Dhouailly D, Prin F, Kanzler B, Viallet J. Variations of cutaneous appendages: regional specification and cross-species signals. In: Chuong C-M, editor. Molecular Basis of Epithelial Appendage Morphogenesis. Georgetown: RG Landes; 1988. p. 44–55.

    Google Scholar 

  49. Sengel P. Morphogenesis of Skin. Cambridge: Cambridge University Press; 1976.

    Google Scholar 

  50. Rinn JL, Wang JK, Allen N, Brugmann SA, Mikels AJ, Liu H, et al. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 2008;22:303–07.

    Article  PubMed  CAS  Google Scholar 

  51. Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol. 2010; Jun:2(6):a003251.

  52. Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Broadus AE. Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development. 1998;125:1285–94.

    PubMed  CAS  Google Scholar 

  53. Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development. 2007;134:1221–30.

    Article  PubMed  CAS  Google Scholar 

  54. Dunbar ME, Dann PR, Robinson GW, Hennighausen L, Zhang JP, Wysolmerski JJ. Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development. 1999;126:3485–93.

    PubMed  CAS  Google Scholar 

  55. Toyoshima Y, Ohsako S, Nagano R, Matsumoto M, Hidaka S, Nishinakagawa H. Histological changes in mouse nipple tissue during the reproductive cycle. J Vet Med Sci. 1998;60:405–11.

    Article  PubMed  CAS  Google Scholar 

  56. Toyoshima Y, Ohsako S, Matsumoto M, Hidaka S, Nishinakagawa H. Histological and morphometrical studies on the rat nipple during the reproductive cycle. Exp Anim. 1998;47:29–36.

    Article  PubMed  CAS  Google Scholar 

  57. Kuenzi MJ, Connolly BA, Sherwood OD. Relaxin acts directly on rat mammary nipples to stimulate their growth. Endocrinology. 1995;136:2943–47.

    Article  PubMed  CAS  Google Scholar 

  58. Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, Wintour EM, et al. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology. 1999;140:445–53.

    Article  PubMed  CAS  Google Scholar 

  59. Wysolmerski J, Broadus A, Zhou J, Fuchs E, Milstone L, Philbrick W. Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Natl Acad Sci USA. 1994;91:1133–37.

    Article  PubMed  CAS  Google Scholar 

  60. Wysolmerski JJ. Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab. 2012;97:2947–56.

    Article  PubMed  CAS  Google Scholar 

  61. Cho YM, Woodard GL, Dunbar M, Gocken T, Jimènez JA, Foley J. Hair-cycle-dependent expression of parathyroid hormone-related protein and its type I receptor: evidence for regulation at the anagen to catagen transition. J Invest Dermatol. 2003;120:715–27.

    Article  PubMed  CAS  Google Scholar 

  62. Dunbar ME, Young P, McCaughern-Carucci J, Lanske B, Orioff JJ, et al. Stromal cells are critical targets in the regulation of mammary ductal morphogenesis by parathyroid hormone-related protein. Dev Biol. 1998;203:75–89.

    Article  PubMed  CAS  Google Scholar 

  63. Lee K, Deeds JD, Segre GV. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology. 1995;136:453–63.

    Article  PubMed  CAS  Google Scholar 

  64. Foley J, Longely BJ, Wysolmerski JJ, Dreyer BE, Broadus AE, Philbrick WM. PTHrP regulates epidermal differentiation in adult mice. J Invest Dermatol. 1998;111:1122–28.

    Article  PubMed  CAS  Google Scholar 

  65. Hiremath M, Dann P, Fischer J, Butterworth D, Boras-Granic K, Hens J, et al. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development. 2012;139:4239–49.

    Article  PubMed  CAS  Google Scholar 

  66. Chan GK, Miao D, Deckelbaum R, Bolivar I, Karaplis A, Goltzman D. Parathyroid hormone-related peptide interacts with bone morphogenetic protein 2 to increase osteoblastogenesis and decrease adipogenesis in pluripotent C3H10T 1/2 mesenchymal cells. Endocrinology. 2003;144:5511–20.

    Article  PubMed  CAS  Google Scholar 

  67. Mayer J, Foley J, De La Cruz D, Chuong C, Widelitz R. Converstion of the nipple to hair-bearing epithlia by lowering bone morphogenetic protein pathway activity at the dermal-epidermal interface. Am J Pathol. 2008;173:1339–48.

    Article  PubMed  CAS  Google Scholar 

  68. Jiang TX, Jung HS, Widelitz RB, Chuong CM. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development. 1999;126:4997–5009.

    PubMed  CAS  Google Scholar 

  69. Kandyba E, Leung Y, Chen YB, Widelitz R, Chuong CM, Kobielak K. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc Natl Acad Sci USA. 2013;110:1351–56.

    Article  PubMed  CAS  Google Scholar 

  70. Plikus MV, Widelitz RB, Maxon R, Chuong CM. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. Int J Dev Biol. 2009;53:857–68.

    Article  PubMed  Google Scholar 

  71. Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Dela Cruz-Pacelis J, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4:155–69.

    Article  PubMed  CAS  Google Scholar 

  72. Griffiths M. Tachyglossidae. In: Walton DW, Richardson BJ, editors. Fauna of Australia –Vol. 1B- Mammalia. Canberra: Australian Government Publishing Service; 1989; Ch. 15:1–58.

  73. Griffiths M, Elliott MA, Leckie RMC, Schoefl GI. Observations of the comparative anatomy and ultrastructure of mammary gland and on the fatty acids of the triglycerides in platypus and echidna milk fats. J Zool Lond. 1973;169:255–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Foley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, S., Wu, HJ., Easwaran, T. et al. The Nipple: A Simple Intersection of Mammary Gland and Integument, but Focal Point of Organ Function. J Mammary Gland Biol Neoplasia 18, 121–131 (2013). https://doi.org/10.1007/s10911-013-9289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9289-1

Keywords

Navigation