Skip to main content
Log in

Symmetries of Pairing Correlations in Superconductor–Ferromagnet Nanostructures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Using selection rules imposed by the Pauli principle, we classify pairing correlations according to their symmetry properties with respect to spin, momentum, and energy. We observe that inhomogeneity always leads to mixing of even- and odd-energy pairing components. We investigate the superconducting pairing correlations present near interfaces between superconductors and ferromagnets, with focus on clean systems consisting of singlet superconductors and either weak or half-metallic ferromagnets. Spin-active scattering in the interface region induces all of the possible symmetry components. In particular, the long-range equal-spin pairing correlations have odd-frequency s-wave and even-frequency p-wave components of comparable magnitudes. We also analyze the Josephson current through a half-metal. We find analytic expressions and a universality in the temperature dependence of the critical current in the tunneling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Löhneysen H. et al. (2005). Annalen d. Physik 14, 591

    Article  ADS  Google Scholar 

  2. D. Beckmann, H. B. Weber, and H. von Löhneysen, Phys. Rev. Lett. 93, 197003 (2004); D. Beckmann and H. von Löhneysen, cond-mat/0609766 (2006).

  3. F. Pérez-Willard, J. C. Cuevas, C. Sürgers, P. Pfundstein, J. Kopu, M. Eschrig, and H. von Löhneysen, Phys. Rev. B 69, 140502 (2004).

    Google Scholar 

  4. Schöck M., Sürgers C., von Löhneysen H. (2000). Eur. Phys. J. B 14, 1

    Article  ADS  Google Scholar 

  5. Strunk C., Sürgers C., Paschen U., von Löhneysen H. (1994). Phys. Rev. B 49: 4053

    Article  ADS  Google Scholar 

  6. T. Kontos et al., Phys. Rev. Lett. 86, 304 (2001); T. Kontos et al., Phys. Rev. Lett. 89, 137007 (2002).

  7. V. V. Ryazanov et al., Phys. Rev. Lett. 86, 2427 (2001); V. V. Ryazanov et al., Phys. Rev. B 65, 020501(R) (2001).

  8. Y. Blum, M. K. A. Tsukernik, and A. Palevski, Phys. Rev. Lett. 89, 187004 (2002); V. Shelukhin et al., Phys. Rev. B 73, 174506 (2006).

  9. Sellier et al. H. (2004). Phys. Rev. Lett. 92, 257005

    Article  ADS  Google Scholar 

  10. Bauer et al. A. (2004). Phys. Rev. Lett. 92, 217001

    Article  ADS  Google Scholar 

  11. Guichard et al. W. (2003). Phys. Rev. Lett. 90, 167001

    Article  ADS  Google Scholar 

  12. M. D. Lawrence and N. Giordano, J. Phys.: Condens. Matter 8, 563 (1996); ibid 11, 1089 (1996).

  13. M. Giroud et al., Phys. Rev. B 58, R11872 (1998); M. Giroud et al., Eur. Phys. J. B 31, 103 (2003).

  14. Petrashov et al. V.T. (1999). Phys. Rev. Lett. 83: 3281

    Article  ADS  Google Scholar 

  15. Keizer et al. R.S. (2006). Nature 439: 825

    Article  ADS  Google Scholar 

  16. Aumentado J., Chandrasekhar V. (2001). Phys. Rev. B 64, 054505

    Article  ADS  Google Scholar 

  17. Gu et al. J.Y. (2002). Phys. Rev. Lett. 89, 267001

    Article  ADS  Google Scholar 

  18. Geers et al. J.M.E. (2001). Phys. Rev. B 64, 094506

    Article  ADS  Google Scholar 

  19. Frolov et al. S.M. (2004). Phys. Rev. B 70, 144505

    Article  ADS  Google Scholar 

  20. Stamopoulos D., Pissas M. (2006). Phys. Rev. B 73, 132502

    Article  ADS  Google Scholar 

  21. L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Pis’ma Zh. Eksp. Teor. Fiz. 25, 314 (1977) [JETP Lett. 25, 290 (1077)].

  22. A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, Pis’ma Zh. Eksp. Teor. Fiz. 35, 147 (1982) [JETP Lett. 35, 178 (1982)].

  23. Bulaevskii et al. L.N. (1985). Adv. Phys. 34, 175

    Article  ADS  Google Scholar 

  24. Radovic et al. Z. (1991). Phys. Rev. B 44, 759

    Article  ADS  Google Scholar 

  25. P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964); V. G. Kogan, Phys. Rev. B 26, 88 (1982).

    Google Scholar 

  26. Zareyan M., Belzig W., Nazarov Yu.V. (2001). Phys. Rev. Lett. 86, 308

    Article  ADS  Google Scholar 

  27. Halterman K., Valls O.T. (2002). Phys. Rev. B 65, 14509

    Article  ADS  Google Scholar 

  28. Yokoyama T., Tanaka Y., Golubov A.A. (2006). Phys. Rev. B 73, 094501

    Article  ADS  Google Scholar 

  29. Konstandin A., Kopu J., Eschrig M. (2005). Phys. Rev. B 72, 140501(R)

    Article  ADS  Google Scholar 

  30. Golubov A.A., Kupriyanov M.Yu., Il’ichev E. (2004). Rev. Mod. Phys. 76, 411

    Article  ADS  Google Scholar 

  31. Bergeret F.S., Volkov A.F., Efetov K.B. (2001). Phys. Rev. Lett. 86: 4096

    Article  ADS  Google Scholar 

  32. Bergeret F.S., Volkov A.F., Efetov K.B. (2005). Rev. Mod. Phys. 77: 1321

    Article  ADS  Google Scholar 

  33. Kadigrobov A., Shekhter R.I., Jonson M. (2001). Europhys. Lett. 54, 394

    Article  ADS  Google Scholar 

  34. M. Eschrig et al., Phys. Rev. Lett. 90, 137003 (2003); J. Kopu et al., Phys. Rev. B 69, 094501 (2004). M. Eschrig et al., in Adv. in Sol. State Phys. B. Kramer, ed., Springer Verlag Heidelberg (2004), vol. 44, pp. 533–546.

  35. T. Löfwander et al., Phys. Rev. Lett. 95, 187003 (2005); T. Löfwander, T. Champel, and M. Eschrig, cond-mat/0605172 (2006).

  36. T. Champel and M. Eschrig, Phys. Rev. B 71, 220506(R) (2005); ibid. 72, 054523 (2005).

  37. Heikkilä T.T., Wilhelm F.K., Schön G. (2000). Europhys. Lett. 51, 434

    Article  ADS  Google Scholar 

  38. Fominov Y.V., Golubov A.A., Kupriyanov M.Y. (2003). JETP Lett. 77, 510

    Article  ADS  Google Scholar 

  39. Buzdin A.I. (2005). Rev. Mod. Phys. 77, 935

    Article  ADS  Google Scholar 

  40. V. Braude and Yu. V. Nazarov, cond-mat/0610037.

  41. Y. Asano, Y. Tanaka, and A. A. Golubov, cond-mat/0609566.

  42. Tokuyasu T., Sauls J.A., Rainer D. (1988). Phys. Rev. B 38: 8823

    Article  ADS  Google Scholar 

  43. Fogelström M. (2000). Phys. Rev. B 62, 11812

    Article  ADS  Google Scholar 

  44. Barash Yu.S., Bobkova I.V. (2002). Phys. Rev. B 65, 144502

    Article  ADS  Google Scholar 

  45. Zhao E., Löfwander T., Sauls J.A. (2004). Phys. Rev. B 70, 134510

    Article  ADS  Google Scholar 

  46. Cottet A., Belzig W. (2005). Phys. Rev. B 72, 180503(R)

    Article  ADS  Google Scholar 

  47. Eschrig M., T. Löfwander, to be published.

  48. Eilenberger G. (1968). Z. Phys. 214, 195

    Article  ADS  Google Scholar 

  49. Larkin A.I., Ovchinnikov Y.N. (1969). Sov. Phys. JETP 28: 1200

    ADS  Google Scholar 

  50. See for example J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).

    Google Scholar 

  51. V. L. Berezinskii, Pis’ma Zh. Eksp. Teor. Fiz. 20, 628 (1974) [JETP Lett. 20, 287 (1974)].

  52. Balatsky A., Abrahams E. (1992). Phys. Rev. B 45, 13125

    Article  ADS  Google Scholar 

  53. Abrahams et al. E. (1995). Phys. Rev. B 52: 1271

    Article  ADS  Google Scholar 

  54. Coleman P., Miranda E., Tsvelik A. (1993). Phys. Rev. Lett. 70: 2960

    Article  ADS  Google Scholar 

  55. Fuseya Y., Kohno H., Miyake K. (2003). J. Phys. Soc. Jap. 72: 2914

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eschrig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschrig, M., Löfwander, T., Champel, T. et al. Symmetries of Pairing Correlations in Superconductor–Ferromagnet Nanostructures. J Low Temp Phys 147, 457–476 (2007). https://doi.org/10.1007/s10909-007-9329-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9329-6

Pacs Numbers

Navigation