Skip to main content
Log in

Welfare-maximizing correlated equilibria using Kantorovich polynomials with sparsity

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We provide motivations for the correlated equilibrium solution concept from the game-theoretic and optimization perspectives. We then propose an algorithm that computes \({\varepsilon}\) -correlated equilibria with global-optimal (i.e., maximum) expected social welfare for normal form polynomial games. We derive an infinite dimensional formulation of \({\varepsilon}\) -correlated equilibria using Kantorovich polynomials, and re-express it as a polynomial positivity constraint. We exploit polynomial sparsity to achieve a leaner problem formulation involving sum-of-squares constraints. By solving a sequence of semidefinite programming relaxations of the problem, our algorithm converges to a global-optimal \({\varepsilon}\) -correlated equilibrium. The paper ends with two numerical examples involving a two-player polynomial game, and a wireless game with two mutually-interfering communication links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nash J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  Google Scholar 

  2. Debreu G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38(10), 886–893 (1952)

    Article  Google Scholar 

  3. Fan K.: Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. 38(2), 121–126 (1952)

    Article  Google Scholar 

  4. Glicksberg I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc. 3(1), 170–174 (1952)

    Google Scholar 

  5. Fudenberg D., Tirole J.: Game Theory. The MIT Press, Cambridge (1991)

    Google Scholar 

  6. Topkis D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)

    Google Scholar 

  7. Monderer D., Shapley L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  Google Scholar 

  8. Rosen J.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)

    Article  Google Scholar 

  9. Huang J., Berry R.A., Honig M.L.: Distributed interference compensation for wireless networks. IEEE J. Sel. Areas Commun. 24(5), 1074–1084 (2006)

    Article  Google Scholar 

  10. Popescu O., Popescu D.C., Rose C.: Simultaneous water filling in mutually interfering systems. IEEE Trans. Wirel. Commun. 6(3), 1102–1113 (2007)

    Article  Google Scholar 

  11. Scutari G., Palomar D.P., Barbarossa S.: Competitive design of multiuser MIMO systems based on game theory: a unified view. IEEE J. Sel. Areas Commun. 26(7), 1089–1103 (2008)

    Article  Google Scholar 

  12. Scutari G., Palomar D.P., Barbarossa S.: The MIMO iterative waterfilling algorithm. IEEE Trans. Signal Process. 57(5), 1917–1935 (2009)

    Article  Google Scholar 

  13. Arrow K.J.: Social Choice and Individual Values. Yale University Press, New Heaven (1963)

    Google Scholar 

  14. Maheswaran R., Başar T.: Efficient signal proportional allocation (ESPA) mechanisms: decentralized social welfare maximization for divisible resources. J. Sel. Areas Commun. 24(5), 1000–1009 (2006)

    Article  Google Scholar 

  15. Arslan G., Demirkol M.F., Song Y.: Equilibrium efficiency improvement in MIMO interference systems: a decentralized stream control approach. IEEE Trans. Wirel. Commun. 6(8), 2984–2993 (2007)

    Article  Google Scholar 

  16. Lasaulce S., Debbah M., Altman E.: Methodologies for analyzing equilibria in wireless games. IEEE Signal Process. Mag. 26(5), 41–52 (2009)

    Article  Google Scholar 

  17. Aumann R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1(1), 67–96 (1974)

    Article  Google Scholar 

  18. Aumann R.J.: Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55(1), 1–18 (1987)

    Article  Google Scholar 

  19. Nau R., Canovas S.G., Hansen P.: On the geometry of Nash equilibria and correlated equilibria. Int. J. Game Theory 32(4), 443–453 (2004)

    Article  Google Scholar 

  20. Stoltz G., Lugosi G.: Learning correlated equilibria in games with compact sets of strategies. Games Econ. Behav. 59(1), 187–208 (2007)

    Article  Google Scholar 

  21. Stein N.D., Parrilo P.A., Ozdaglar A.: Correlated equilibria in continuous games: Characterization and computation. Games Econ. Behav. 71(2), 436–455 (2011)

    Article  Google Scholar 

  22. Harsanyi, J.: Games of incomplete information played by “Bayesian” Players, I–III. Manag. Sci. 14(3, 5, 7), 159–182, 320–334, 486–502, (1967, 1968, 1968)

  23. Brandenburger A.: Epistemic game theory: an overview. In: Durlauf, S.N., Blume, L.E. (eds) The New Palgrave Dictionary of Economics, 2nd edn, Palgrave Macmillan, Basingstoke (2008)

    Google Scholar 

  24. Siniscalchi M.: Epistemic game theory: beliefs and types. In: Durlauf, S.N., Blume, L.E. (eds) The New Palgrave Dictionary of Economics, 2nd edn, Palgrave Macmillan, Basingstoke (2008)

    Google Scholar 

  25. Brandenburger A.: Epistemic game theory: complete information. In: Durlauf, S.N., Blume, L.E. (eds) The New Palgrave Dictionary of Economics, 2nd edn, Palgrave Macmillan, Basingstoke (2008)

    Google Scholar 

  26. Harsanyi J.C.: Rational Behavior and Bargaining Equilibrium in Games and Social Situations. Cambridge University Press, Cambridge (1977)

    Book  Google Scholar 

  27. Bernheim D.: Rationalizable strategic behavior. Econometrica 52(4), 1007–1028 (1984)

    Article  Google Scholar 

  28. Pearce D.G.: Rationalizable strategic behavior and the problem of perfection. Econometrica 52(4), 1029–1050 (1984)

    Article  Google Scholar 

  29. Aumann R.J., Brandenburger A.: Epistemic conditions for Nash equilibrium. Econometrica 63(5), 1161–1180 (1995)

    Article  Google Scholar 

  30. Gintis, H.: Bayesian rationality and social epistemology. In: The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences, pp. 133–146. Princeton University Press, Princeton (2009)

  31. Brandenburger A., Dekel E.: Rationalizability and correlated equilibria. Econometrica 55(6), 1391–1402 (1987)

    Article  Google Scholar 

  32. Lewis D.: Conventions: A philosophical study. Harvard University Press, Cambridge (1969)

    Google Scholar 

  33. Aumann R.J.: Agreeing to disagree. Ann. Stat. 4(6), 1236–1239 (1976)

    Article  Google Scholar 

  34. Savage L.: The Foundations of Statistics. Wiley, New York (1954)

    Google Scholar 

  35. Hammond, P.J.: Consequentialism and Bayesian rationality in normal form games. In: Game Theory, Experience, Rationality: Foundations of Social Sciences, Economics and Ethics; In Honor of John C. Harsanyi, pp. 187–196. Kluwer, Dordrecht (1998)

  36. Oaksford M., Chater N.: Précis of Bayesian rationality: the probabilistic approach to human reasoning. Behav. Brain Sci. 32(1), 69–84 (2009)

    Article  Google Scholar 

  37. Han, Z., Pandana, C., Liu, K.J.R.: Distributive opportunistic spectrum access for cognitive radio using correlated equilibrium and no-regret learning. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp. 11–15, Hong Kong (2007)

  38. Maskery M., Krishnamurthy V., Zhao Q.: Game theoretic learning and pricing for dynamic spectrum access in cognitive radio. In: Hossain, E., Bhargava, V.K. (eds) Cognitive Wireless Communication Networks, pp. 303–325. Springer, Berlin (2007)

    Chapter  Google Scholar 

  39. Han Z.: Degrees of cooperation in dynamic spectrum access for distributed cognitive radios. In: Hossain, E., Bhargava, V.K. (eds) Cognitive Wireless Communication Networks, pp. 231–270. Springer, Berlin (2007)

    Chapter  Google Scholar 

  40. Krishnamurthy V., Maskery M., Yin G.: Decentralized adaptive filtering algorithms for sensor activation in an unattended ground sensor network. IEEE Trans. Signal Process. 56(12), 6086–6101 (2008)

    Article  Google Scholar 

  41. Belmega, E.V., Lasaulce, S., Debbah, M., Hjørungnes, A.: Learning distributed power allocation policies in MIMO channels. In: European Signal Processing Conference (EUSIPCO). Invited paper, Aalborg (2010, Aug)

  42. Hart S., Mas-Colell A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000)

    Article  Google Scholar 

  43. Hart, S., Mas-Colell, A.: A reinforcement procedure leading to correlated equilibrium. In: Economic Essays: A Festschrift for Werner Hildenbrand, pp. 181–200 (2001)

  44. Kong F.W., Kleniati P.M., Rustem B.: Computation of correlated equilibrium with global-optimal expected social welfare. J. Optim. Theory Appl. 153(1), 237–261 (2012)

    Article  Google Scholar 

  45. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000)

    Article  Google Scholar 

  46. Waki H., Kim S., Kojima M., Muramatsu M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  Google Scholar 

  47. Szili L.: On A.E. convergence of multivariate Kantorovich polynomials. Acta Mathematica Hungarica 77(1), 137–146 (1997)

    Article  Google Scholar 

  48. Abel U.: Asymptotic approximation with Kantorovich polynomial. Approx. Theory Appl. 14(3), 106–116 (1998)

    Google Scholar 

  49. Jeffreys, H., Jeffreys, B.S.: Weierstrass’s theorem on approximation by polynomials. In: Methods of Mathematical Physics, Chapter Mean-Value Theorems, 3rd edn, pp. 446–448. Cambridge University Press, Cambridge (1988)

  50. Hart S., Schmeidler D.: Existence of correlated equilibria. Math. Oper. Res. 14(1), 18–25 (1989)

    Article  Google Scholar 

  51. Lorentz G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing Company, New York (1986)

    Google Scholar 

  52. Lasserre J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  Google Scholar 

  53. Grimm D., Netzer T., Schweighofer M.: A note on the representation of positive polynomials with structured sparsity. Archiv der Mathematik 89(5), 399–403 (2007)

    Article  Google Scholar 

  54. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  Google Scholar 

  55. Borchers B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999)

    Article  Google Scholar 

  56. Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  Google Scholar 

  57. von Neumann J., Morgenstern O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    Google Scholar 

  58. Osborne M.J., Rubinstein A.: A Course in Game Theory. The MIT Press, Cambridge (1994)

    Google Scholar 

  59. Curto R.E., Fialkow L.A.: The truncated complex K-moment problem. Trans. Am. Math. Soc. 352(6), 2825–2855 (2000)

    Article  Google Scholar 

  60. Laurent M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds) Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270. Springer, Berlin (2009)

    Chapter  Google Scholar 

  61. Kuhlmann S., Marshall M.: Positivity, sums of squares and the multi-dimensional moment problem. Trans. Am. Math. Soc. 354(11), 4285–4302 (2002)

    Article  Google Scholar 

  62. Putinar M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  Google Scholar 

  63. Nie J., Schweighofer M.: On the complexity of Putinar’s positivstellensatz. J. Complex. 23(1), 135–150 (2007)

    Article  Google Scholar 

  64. Kojima M., Kim S., Waki H.: Sparsity in sums of squares of polynomials. Math. Program. 103(1), 45–62 (2005)

    Article  Google Scholar 

  65. Kim S., Kojima M., Waki H.: Generalized Lagrangian duals and sums of squares relaxations of sparse polynomial optimization problems. SIAM J. Optim. 15(3), 697–719 (2005)

    Article  Google Scholar 

  66. Fukuda M., Kojima M., Murota K., Nakata K.: Exploiting sparsity in semidefinite programming via matrix completion I: general framework. SIAM J. Optim. 11(3), 647–674 (2000)

    Article  Google Scholar 

  67. Scherer C.W., Hol C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program. 107(1), 189–211 (2006)

    Article  Google Scholar 

  68. Yu W., Rhee W., Boyd S., Cioffi J.M.: Iterative water-filling for Gaussian vector multiple-access channels. IEEE Trans. Inf. Theory 50(1), 145–152 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fook Wai Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, F.W., Rustem, B. Welfare-maximizing correlated equilibria using Kantorovich polynomials with sparsity. J Glob Optim 57, 251–277 (2013). https://doi.org/10.1007/s10898-012-9912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9912-5

Keywords

Mathematics Subject Classification

Navigation