Skip to main content
Log in

Some remarks on nonsmooth critical point theory

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A general min–max principle established by Ghoussoub is extended to the case of functionals f which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, when f satisfies a compactness condition weaker than the Palais–Smale one, i.e., the so-called Cerami condition. Moreover, an application to a class of elliptic variational–hemivariational inequalities in the resonant case is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosetti A., Rabinowitz P.H. (1973). Dual variational methods in critical point theoryand applications. J. Funct. Anal. 14:349–381

    Article  Google Scholar 

  2. Barletta G., Marano S.A. (2003). Some remarks on critical point theory for locally Lischitz functions. Glasgow Math. J. 45:131–141

    Article  Google Scholar 

  3. Bartolo P., Benci V., Fortunato D. (1983). Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. 9:981–1012

    Article  Google Scholar 

  4. Cerami G. (1978). Un criterio di esistenza per i punti critici su varietà illimitate. Rend. Inst. Lombardo Sci. Lett. 112:332–336

    Google Scholar 

  5. Chang K.-C. (1981). Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80:102–129

    Article  Google Scholar 

  6. Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics Appl. Math. 5, SIAM, Philadelphia (1990)

  7. Deimling K. (1985). Nonlinear Functional Analysis. Springer-Verlag, Berlin

    Google Scholar 

  8. Du Y. (1991). A deformation lemma and some critical point theorems. Bull. Aust. Math. Soc. 43:161–168

    Article  Google Scholar 

  9. Ekeland I. (1979). Nonconvex minimization problems. Bull. Am. Math. Soc. 1:443–474

    Article  Google Scholar 

  10. Ghoussoub N. (1993). A min-max principle with a relaxed boundary condition. Proc. Am. Math. Soc., 117:439–447

    Article  Google Scholar 

  11. Ghoussou N., Preiss D. (1989). A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non-Linéaire 6:321–330

    Google Scholar 

  12. Kourogenis N.C., Papageorgiou N.S. (2000). Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Aust. Math. Soc. (Series A) 69:245–271

    Google Scholar 

  13. Livrea R., Marano S.A. (2004). Existence and classification of critical points for non-differentiable functions. Adv. Diff. Eq. 9:961–978

    Google Scholar 

  14. Marano S.A., Motreanu D. (2003). A deformation theorem and some critical point results for non-differentiable functions. Topol. Methods Nonlinear Anal. 22:139–158

    Google Scholar 

  15. Marano, S.A., Papageorgious, N.: On a Neumann problem with p-Laplacian and non-smooth potential, preprint

  16. Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Nonconvex Optim. Appl. volume 29, Kluwer, Dordrecht (1998)

  17. Motreanu, D., Radulescu, V.: Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Nonconvex Optim. Appl. Vol. 67, Kluwer, Dordrecht (2003)

  18. Motreanu D., Varga C. (1997). Some critical point results for locally Lipschitz functionals. Comm. Appl. Nonlinear Anal. 4:17–33

    Google Scholar 

  19. Pucci P., Serrin J. (1985). A mountain pass theorem. J. Diff. Eq. 60:142–149

    Article  Google Scholar 

  20. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differenzial equations. CBMS Reg. Conf. Ser. in Math. Vol. 65, Amer. Math. Soc., Providence (1986)

  21. Schechter M. (2005). Saddle point techniques. Nonlinear Anal. TMA 63:699–711

    Article  Google Scholar 

  22. Szulkin A. (1986). Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Ist. Henri Poincaré 3:77–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Livrea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livrea, R., Bisci, G.M. Some remarks on nonsmooth critical point theory. J Glob Optim 37, 245–261 (2007). https://doi.org/10.1007/s10898-006-9047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9047-7

Keywords

Mathematics Subject Classification (2000)

Navigation