Skip to main content
Log in

Dependence of Potential Well Depth on the Magnetic Field Intensity in a Polywell Reactor

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Using OOPIC-Pro assisted-two dimensional simulation we have considered the dependencies of the electron and ion densities, as well as the central electric potential on the magnetic-field intensity in the Polywell fusion reactor. It is shown that the potential well depth increases with decreasing the magnetic intensity, while much narrower well width (thus more effective deuteron trapping) is achieved with increasing the magnetic field intensity. The results obtained can be employed to adjust the magnetic field intensities at which more effective electron confinement, thus more effective ion-flux convergence, is expected. Furthermore, this study can be used to reach the optimized conditions of the reactor operation as well as to relate to the next generation fusion fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NPW:

Negative potential well

References

  1. R.W. Bussard, Fusion Technol. 19, 273 (1991)

    Google Scholar 

  2. K. Noborio, Y. Yamamoto, Y. Ueno, S. Konishi, in Proceedings of 21th IEEE/NPSS Symposium on Fusion Engineering, Knoxville, Tennessee, USA (2005)

  3. T. Takamatsu K. Masuda, S. Ogawa, H. Toku, K. Yoshikawa, in Proceedings of 21th IEEE/NPSS Symposium on Fusion Engineering, Knoxville, Tennessee, USA (2005)

  4. K. Tomiyasu, K. Yokoyama, M. Watanabe, E. Hotta, Fusion Eng. Design 85, 728 (2010)

    Article  Google Scholar 

  5. Y.K. Kurilenkov et al., J. Phys. A: Math. Theor 42, 214041 (2009)

    Article  ADS  Google Scholar 

  6. V. Damideh et al., J Fusion Energ. Online first, 11 June 2011 (2011)

  7. J.G. Rogers, U. S. Patent No. Modular Apparatus for Confining a Plasma, US20100284501, (2010)

  8. M. Carr, J. Khachan, Phys. Plasmas 17, 052510 (2010)

    Article  ADS  Google Scholar 

  9. D.L. Bruhwiler, R.E. Giacone, J.R. Cary, J.P. Verboncoeur, P. Mardahl, E. Esarey, W.P. Leemans, B.A. Shadwick, Phys. Rev. ST Accel. Beams 4, 101302 (2001)

    Article  ADS  Google Scholar 

  10. S.O. Cetiner, P. Stoltz, P. Messmer, J.-L. Cambier, J. Appl. Phys. 103, 023304 (2008)

    Article  ADS  Google Scholar 

  11. V.A. Shklyaev, V.V. Ryzhov, Tech. Phys. Lett. 35, 518 (2009)

    Article  ADS  Google Scholar 

  12. B.K. Law, C.K. Koo, J.T.L. Thong, Appl. Phys. Lett. 91, 243108 (2007)

    Article  ADS  Google Scholar 

  13. A.M. Cook et al., Phys. Rev. Lett. 103, 095003 (2009)

    Article  ADS  Google Scholar 

  14. R.W. Bussard, The advent of clean nuclear fusion: superperformance space power and propulsion, in 57th International Astronautical Congress (IAC, Valencia, Spain, 2006)

  15. J.G. Rogers, PIC Simulation of Polywell, in 11th US-Japan Workshop on Inertial Electrostatic Confinement Fusion (Madison, Wisconsin, USA, 2009)

  16. J.D. Huba, Revised NRL Plasma Formulary (2002), http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY_02.pdf. Accessed 10 Jul 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Damideh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazemyzade, F., Mahdipoor, H., Bagheri, A. et al. Dependence of Potential Well Depth on the Magnetic Field Intensity in a Polywell Reactor. J Fusion Energ 31, 341–345 (2012). https://doi.org/10.1007/s10894-011-9474-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9474-4

Keywords

Navigation