Skip to main content
Log in

Acclimation to Elevated CO2 Increases Constitutive Glucosinolate Levels of Brassica Plants and Affects the Performance of Specialized Herbivores from Contrasting Feeding Guilds

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants growing under elevated CO2 concentration may acclimate by modifying chemical traits. Most studies have focused on the effects of environmental change on plant growth and productivity. Potential effects on chemical traits involved in resistance, and the consequences of such effects on plant-insect interactions, have been largely neglected. Here, we evaluated the performance of two Brassica specialist herbivores from contrasting feeding guilds, the leaf-feeding Pieris brassicae and the phloem-feeding Brevicoryne brassicae, in response to potential CO2-mediated changes in primary and major secondary metabolites (glucosinolates) in Brassica oleracea. Plants were exposed to either ambient (400 ppm) or elevated (800 ppm) CO2 concentrations for 2, 6, or 10 weeks. Elevated CO2 did not affect primary metabolites, but significantly increased glucosinolate content. The performance of both herbivores was significantly reduced under elevated CO2 suggesting that CO2-mediated increases in constitutive defense chemistry could benefit plants. However, plants with up-regulated defenses could also be subjected to intensified herbivory by some specialized herbivores, due to a chemically-mediated phagostimulatory effect, as documented here for P. brassicae larvae. Our results highlight the importance of understanding acclimation and responses of plants to the predicted increases in atmospheric CO2 concentrations and the concomitant effects of these responses on the chemically-mediated interactions between plants and specialized herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrell, J., Anderson, P., Oleszek, W., Stochmal, A., and Agrell, C. 2004. Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. J. Chem. Ecol. 30:2309–2324.

    Article  PubMed  CAS  Google Scholar 

  • Agrell, J., Anderson, P., Oleszek, W., Stochmal, A., and Agrell, C. 2006. Elevated CO2 levels and herbivore damage alter host plant preferences. Oikos 112:63–72.

    Article  Google Scholar 

  • Ahuja, I., Rohloff, J., and Bones, A. M. 2010. Defence mechanisms of Brassicaceae: Implications for plant-insect interactions and potential for integrated pest management. A review. Agron. Sustain. Dev. 30:311–348.

    Article  Google Scholar 

  • Aires, A., Rosa, E., and Carvalho, R. 2006. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Agric. 86:1512–1516.

    Article  CAS  Google Scholar 

  • Akey, D. H. and Kimball, B. A. 1989. Growth and development of the beet armyworm (Lepidoptera, Noctuidae) on cotton grown in an enriched carbon-dioxide atmosphere. Southwest. Entomol. 14:255–260.

    Google Scholar 

  • Awmack, C. S. and Leather, S. R. 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47:817–844.

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn, D. J., Heil, M., Pietrowski, A., and Lieberei, R. 2007. Quantitative effects of cyanogenesis on an adapted herbivore. J. Chem. Ecol. 33:2195–2208.

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn, D. J., Schmitt, I., Fankhauser, J. D., Katagiri, F., and Pfanz, H. 2011. CO2-mediated changes of plant traits and their effects on herbivores are determined by leaf age. Ecol. Entomol. 36:1–13.

    Article  Google Scholar 

  • Bennett, R. N. and Wallsgrove, R. M. 1994. Secondary metabolites in plant defense mechanisms. New Phytol. 127:617–633.

    Article  CAS  Google Scholar 

  • Bidart-Bouzat, M. G. and Imeh-Nathaniel, A. 2008. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50:1339–1354.

    Article  PubMed  CAS  Google Scholar 

  • Bidart-Bouzat, M. G., Mithen, R., and Berenbaum, M. R. 2005. Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424.

    Article  PubMed  Google Scholar 

  • Blackman, R. L. and Eastop, V. F. 2000. pp. 476, Aphids on the world’s crops, an identification and information guide, 2nd ed. Wiley, Chichester.

    Google Scholar 

  • Brooks, G. L. and Whittaker, J. B. 1998. Responses of multiple generations of Gastrophysa viridula, feeding on Rumex obtusifolius, to elevated CO2. Glob. Chang. Biol. 4:63–75.

    Article  Google Scholar 

  • Cartea, M. E., Rodriguez, V. M., de Haro, A., Velasco, P., and Ordas, A. 2008. Variation of glucosinolates and nutritional value in nabicol (Brassica napus pabularia group). Euphytica 159:111–122.

    Article  CAS  Google Scholar 

  • Chew, F. S. 1995. From weeds to crops: changing habitats of pierid butterflies (Lepidoptera: Pieridae). J. Lepid. Soc. 49:285–303.

    Google Scholar 

  • Coley, P. D., Massa, M., Lovelock, C. E., and Winter, K. 2002. Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62–69.

    Article  Google Scholar 

  • Coviella, C. E., Stipanovic, R. D., and Trumble, J. T. 2002. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J. Exp. Bot. 53:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, M., Bale, J. S., Newbury, H. J., Lind, R. J., and Pritchard, J. 2009. A sublethal dose of thiamethoxam causes a reduction in xylem feeding by the bird cherry-oat aphid (Rhopalosiphum padi), which is associated with dehydration and reduced performance. J. Insect Physiol. 55:758–765.

    Article  PubMed  CAS  Google Scholar 

  • Des Gachons, C. P., Beauchamp, G. K., and Breslin, P. A. S. 2009. The genetics of bitterness and pungency detection and its impact on phytonutrient evaluation. Ann. N. Y. Acad. Sci. 1170:140–144.

    Article  PubMed  Google Scholar 

  • Douglas, A. E. 2003. The nutritional physiology of aphids. Adv. Insect Physiol. 31:73–140.

    Article  CAS  Google Scholar 

  • Frehner, M., Luscher, A., Hebeisen, T., Zanetti, S., Schubiger, F., and Scalet, M. 1997. Effects of elevated partial pressure of carbon dioxide and season of the year on forage quality and cyanide concentration of Trifolium repens L. from a FACE experiment. Acta Oecol. Int. J. Ecol. 18:297–304.

    Article  Google Scholar 

  • Frenck, G., van der Linden, L., Mikkelsen, T. N., Brix, H., and Jørgensen, R. B. 2011. Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L. Eur. J. Agron. 35:127–134.

    Article  Google Scholar 

  • Gabrys, B., Tjallingii, W. F., and Vanbeek, T. A. 1997. Analysis of EPG recorded probing by cabbage aphid on host plant parts with different glucosinolate contents. J. Chem. Ecol. 23:1661–1673.

    Article  CAS  Google Scholar 

  • Gleadow, R. M., Foley, W. J., and Woodrow, I. E. 1998. Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant Cell Environ. 21:12–22.

    Article  CAS  Google Scholar 

  • Gols, R., Bukovinszky, T., van Dam, N. M., Dicke, M., Bullock, J. M., and Harvey, J. A. 2008. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J. Chem. Ecol. 34:132–143.

    Article  PubMed  CAS  Google Scholar 

  • Goverde, M. and Erhardt, A. 2003. Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Glob. Chang. Biol. 9:74–83.

    Article  Google Scholar 

  • Gutbrodt, B., Mody, K., and Dorn, S. 2011a. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120:1732–1740.

    Article  CAS  Google Scholar 

  • Gutbrodt, B., Mody, K., Wittwer, R., and Dorn, S. 2011b. Within-plant distribution of induced resistance in apple seedlings: Rapid acropetal and delayed basipetal responses. Planta 233:1199–1207.

    Article  PubMed  CAS  Google Scholar 

  • Gutbrodt, B., Dorn, S., Unsicker, S. B., and Mody, K. 2012. Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology 22:101–111.

    Article  Google Scholar 

  • Himanen, S. J., Nissinen, A., Auriola, S., Poppy, G. M., Stewart, C. N., Holopainen, J. K., and Nerg, A. M. 2008. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta 227:427–437.

    Article  PubMed  CAS  Google Scholar 

  • Himanen, S. J., Nerg, A. M., Nissinen, A., Pinto, D. M., Stewart, C. N., Poppy, G. M., and Holopainen, J. K. 2009. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 181:174–186.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, R. J., van Dam, N. M., and van Loon, J. J. A. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54:57–83.

    Article  PubMed  CAS  Google Scholar 

  • Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Xiaosu, D., Maskell, K., and Johnson, C. 2001. Climate change 2001: The scientific basis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Karowe, D. N. 2007. Are legume-feeding herbivores buffered against direct effects of elevated carbon dioxide on host plants? a test with the sulfur butterfly, Colias philodice. Glob. Chang. Biol. 13:2045–2051.

    Article  Google Scholar 

  • Karowe, D. N., Seimens, D. H., and Mitchellolds, T. 1997. Species-specific response of glucosinolate content to elevated atmospheric CO2. J. Chem. Ecol. 23:2569–2582.

    Article  CAS  Google Scholar 

  • Klaiber, J, Najar-Rodriguez, A. J., Dialer, E., and Dorn, S. 2013a. Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biol. Control. doi:10.1016/j.biocontrol.2013.03.006.

  • Klaiber, J., Najar-Rodriguez, A. J., Piskorski, R., and Dorn, S. 2013b. Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237:29–42.

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J., and Mitchell-Olds, T. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126:811–825.

    Article  PubMed  CAS  Google Scholar 

  • Klingler, J., Powell, G., Thompson, G. A., and Isaacs, R. 1998. Phloem specific aphid resistance in Cucumis melo line AR 5: Effects on feeding behaviour and performance of Aphis gossypii. Entomol. Exp. Appl. 86:79–88.

    Article  Google Scholar 

  • Kos, M., Houshyani, B., Wietsma, R., Kabouw, P., Vet, L. E. M., van Loon, J. J. A., and Dicke, M. 2012. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry 77:162–170.

    Article  PubMed  CAS  Google Scholar 

  • La, G. X., Fang, P., Teng, Y. B., Li, Y. J., and Lin, X. Y. 2009. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.). J. Zhejiang Univ. Sci. B. 10:454–464.

    Article  PubMed  CAS  Google Scholar 

  • Mattiacci, L., Rudelli, S., Rocca, B. A., Genini, S., and Dorn, S. 2001. Systemically-induced response of cabbage plants against a specialist herbivore, Pieris brassicae. Chemoecology 11:167–173.

    Article  Google Scholar 

  • Mittler, T. E. and Meikle, T. 1991. Effects of dietary sucrose concentration on aphid honeydew carbohydrate-levels and rates of excretion. Entomol. Exp. Appl. 59:1–7.

    Article  CAS  Google Scholar 

  • Mody, K., Unsicker, S. B., and Linsenmair, K. E. 2007. Fitness related diet-mixing by intraspecific host-plant-switching of specialist insect herbivores. Ecology 88:1012–1020.

    Article  PubMed  Google Scholar 

  • Müller, R., De Vos, M., Sun, J. Y., Sonderby, I. E., Halkier, B. A., Wittstock, U., and Jander, G. 2010. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J. Chem. Ecol. 36:905–913.

    Article  PubMed  Google Scholar 

  • Najar-Rodriguez, A. J., Walter, G. H., and Mensah, R. K. 2007. The efficacy of a petroleum spray oil against Aphis gossypii Glover on cotton. Part 1: Mortality rates and sources of variation. Pest. Manag. Sci. 63:586–595.

    Article  PubMed  CAS  Google Scholar 

  • Newton, E., Bullock, J. M., and Hodgson, D. 2009. Bottom-up effects of glucosinolate variation on aphid colony dynamics in wild cabbage populations. Ecol. Entomol. 34:614–623.

    Article  Google Scholar 

  • Olsson, K. and Jonasson, T. 1994. Leaf feeding by caterpillars on white cabbage cultivars with different 2-propenyl glucosinolate (sinigrin) content. J. Appl. Entomol. 118:197–202.

    Article  Google Scholar 

  • Opitz, S. E. W. and Müller, C. 2009. Plant chemistry and insect sequestration. Chemoecology 19:117–154.

    Article  CAS  Google Scholar 

  • Plath, M., Mody, K., Potvin, C., and Dorn, S. 2011. Do multipurpose companion trees affect high value timber trees in a silvopastoral plantation system? Agroforest. Syst. 81:79–92.

    Article  Google Scholar 

  • Poelman, E. H., van Dam, N. M., van Loon, J. J. A., Vet, L. E. M., and Dicke, M. 2009. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology 90:1863–1877.

    Article  PubMed  Google Scholar 

  • R Development Core Team. 2009. R is a language and environment for statistical computing and graphics. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org.

  • Reddy, G. V. P., Tossavainen, P., Nerg, A. M., and Holopainen, J. K. 2004. Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. J. Agr. Food Chem. 52:4185–4191.

    Article  CAS  Google Scholar 

  • Renwick, J. A. A. and Lopez, K. 1999. Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates? Entomol. Exp. Appl. 91:51–58.

    Article  CAS  Google Scholar 

  • Ryan, G. D., Rasmussen, S., and Newman, J. A. 2010. Global atmospheric change and trophic interactions: are there any general responses? pp. 179–212, in F. Baluska and V. Ninkovic (eds.), Signaling and communication plants. Springer, Berlin.

    Google Scholar 

  • Schonhof, I., Klaring, H. P., Krumbein, A., and Schreiner, M. 2007. Interaction between atmospheric CO2 and glucosinolates in broccoli. J. Chem. Ecol. 33:105–114.

    Article  PubMed  CAS  Google Scholar 

  • van Doorn, H. E., van der Kruk, G. C., van Holst, G. J., Raaijmakers-Ruijs, N. C. M. E., Postma, E., Groeneweg, B., and Jongen, W. H. F. 1998. The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of Brussels sprouts. J. Sci. Food Agr. 78:30–38.

    Article  Google Scholar 

  • van Loon, J. J. A., Wang, C. Z., Nielsen, J. K., Gols, R., and Qiu, Y. T. 2002. Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour. Entomol. Exp. Appl. 104:27–34.

    Article  Google Scholar 

  • Vannette, R. L. and Hunter, M. D. 2011. Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Glob. Chang. Biol. 17:1277–1288.

    Article  Google Scholar 

  • Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5:229–288.

    Article  Google Scholar 

  • Warrington, S. and Whittaker, J. B. 1985. An experimental field-study of different levels of insect herbivory induced by Formica rufa predation on sycamore (Acer pseudoplatanus). 2. Aphidoidea. J. Appl. Ecol. 22:787–796.

    Article  Google Scholar 

  • Winde, I. and Wittstock, U. 2011. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72:1566–1575.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt, I. J. and White, P. F. 1977. Simple estimation of intrinsic increase rates for aphids and tetranychid mites. J. Appl. Ecol. 14:757–766.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Cornelia Sauer (Agroscope Wädenswil) for providing aphids, Dr. Markus Kalisch (Seminar for Statistics ETH) for statistical advice, Daniela Brunner for helping with the aphids experiments, Dr. Elena Cartea Gonzalez and Dr. Pablo Velasco Pazos (Misión Biológica de Galizia, Consejo Superior de Investigaciones Científicas) for help with and advice on glucosinolate analysis, Dr. Bettina Gutbrodt and two anonymous reviewers for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Najar-Rodriguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 17 kb)

ESM 3

(DOCX 17 kb)

ESM 4

(DOCX 17 kb)

ESM 5

(DOCX 15 kb)

ESM 6

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaiber, J., Dorn, S. & Najar-Rodriguez, A.J. Acclimation to Elevated CO2 Increases Constitutive Glucosinolate Levels of Brassica Plants and Affects the Performance of Specialized Herbivores from Contrasting Feeding Guilds. J Chem Ecol 39, 653–665 (2013). https://doi.org/10.1007/s10886-013-0282-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0282-3

Keywords

Navigation