Skip to main content

Advertisement

Log in

Microbes as Targets and Mediators of Allelopathy in Plants

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Studies of allelopathy in terrestrial systems have experienced tremendous growth as interest has risen in describing biochemical mechanisms responsible for structuring plant communities, determining agricultural and forest productivity, and explaining invasive behaviors in introduced organisms. While early criticisms of allelopathy involved issues with allelochemical production, stability, and degradation in soils, an understanding of the chemical ecology of soils and its microbial inhabitants has been increasingly incorporated in studies of allelopathy, and recognized as an essential predictor of the outcome of allelopathic interactions between plants. Microbes can mediate interactions in a number of ways with both positive and negative outcomes for surrounding plants and plant communities. In this review, we examine cases where soil microbes are the target of allelopathic plants leading to indirect effects on competing plants, provide examples where microbes play either a protective effect on plants against allelopathic competitors or enhance allelopathic effects, and we provide examples where soil microbial communities have changed through time in response to allelopathic plants with known or potential effects on plant communities. We focus primarily on interactions involving wild plants in natural systems, using case studies of some of the world’s most notorious invasive plants, but we also provide selected examples from agriculturally managed systems. Allelopathic interactions between plants cannot be fully understood without considering microbial participants, and we conclude with suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abhilasha, D., Quintana, N., Vivanco, J., and Joshi, J. 2008. Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora. J. Ecol. 96:993Y1001.

    Article  Google Scholar 

  • Alsaadawi, I. S. and Rice, E. L. 1982. Allelopathic effects of Polygonum aviculare L. II. Isolation, characterization, and biological activities of phytotoxins. J. Chem. Ecol. 8:1011Y122.

    Google Scholar 

  • Bainard, L. D., Brown, P. D., and Upadhyaya, M. K. 2009. Inhibitory effect of tall hedge mustard (Sysymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi. Weed Sci. 57:386Y393.

    Article  CAS  Google Scholar 

  • Bains, G., Kumar, A. S., Rudrappa, T., Alff, E., Hanson, T. E., and Bais, H. P. 2009. Native plant and microbial contributions to a negative plant-plant interaction. Plant Physiol. 151:214Y–2151Y.

    Article  CAS  Google Scholar 

  • Bais, H. P. and Kaushik, S. 2010. Catechin secretion and phytotoxicity Fact not fiction. Comm. Integ. Biol. 3:46Y–470Y.

    Article  Google Scholar 

  • Barazani, O. and Friedman, J. 2001. Allelopathic bacteria and their impact on higher plants. Crit. Rev. Micro. 27:4Y–55Y.

    Google Scholar 

  • Barto, E. K. and Cipollini, D. 2009a. Density dependent phytotoxicity of Impatiens pallida plants exposed to extracts of Alliaria petiolata. J. Chem. Ecol. 35:495Y504.

    Article  CAS  Google Scholar 

  • Barto, E. K. and Cipollini, D. 2009b. Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere 76:71Y75.

    Google Scholar 

  • Barto, E. K., Friese, C. F., and Cipollini, D. 2010a. Arbuscular mycorrhizal fungi protect a native plant from allelopathic effects of an invader. J. Chem. Ecol. 36:351Y360.

    Article  CAS  Google Scholar 

  • Barto, E. K., Powell, J., and Cipollini, D. 2010b. How novel are the chemical weapons of garlic mustard in North American forest understories? Biol. Inv. 12:3465Y3471.

    Article  Google Scholar 

  • Barto, K. E., Hilker, M., Müller, F., Mohney, B. K., Weidenhamer, J. D., and Rillig, M. C. 2011. The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6:e27195.

    Article  PubMed  CAS  Google Scholar 

  • Barto, E. K., Antunes, P. M., Stinson, K., Koch, A. M., Klironomos, J. N., and Cipollini, D. 2012. Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches. Biol. Inv. doi:10.1007/s10530-011-9945-6.

  • Batten, K. M., Scow, K. M., Davies, K. F., and Harrison, S. P. 2006. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Inv. 8:217Y230.

    Article  Google Scholar 

  • Baumeler, A., Hesse, M., and Werner, C. 2000. Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae). Phytochemistry 53:213Y222.

    Article  Google Scholar 

  • Becard, G., Douds, D. D., and Pfeffer, P. E. 1992. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl. Env. Micro. 1992:821Y825.

    Google Scholar 

  • Belz, R. G. 2007. Allelopathy in crop/weed interactions—an update. Pest Manag. Sci. 63:308Y326.

    Article  CAS  Google Scholar 

  • Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685Y708.

    Article  Google Scholar 

  • Blum, U. and Shafer, S. R. 1988. Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20:793Y800.

    Article  Google Scholar 

  • Blum, U., Gerig, T. M., Worsham, A. D., and King, L. D. 1993. Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J. Chem. Ecol. 19:2791Y2811.

    Article  Google Scholar 

  • Blum, U., Worsham, A. D., King, L. D., and Gerig, T. M. 1994. Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soil. J. Chem. Ecol. 20:341Y359.

    Article  Google Scholar 

  • Boufalis, A. and Pellisier, F. 1994. Allelopathic effects of phenolic mixtures on respiration of two spruce mycorrhizal fungi. J. Chem. Ecol. 20:2283–2289.

    Article  CAS  Google Scholar 

  • Brown, P. D. and Morra, J. M. 1997. Control of soil-borne plant pests using glucosinolate-containing plants. Adv. Agron. 61:167Y231.

    Google Scholar 

  • Broz, A. K., Manter, D. K., Bowman, G., Müller-Schärer, H., and Vivanco, J. M. 2009. Plant origin and ploidy influence gene expression and life cycle characteristics in an invasive weed. BMC Plant Biol. 9:33.

    Article  PubMed  CAS  Google Scholar 

  • Burke, D. J. 2008. Effects of Alliaria petiolata (garlic mustard; Brassicaceae) on mycorrhizal colonization and community structure in three herbaceous plants in a mixed deciduous forest. Am. J. Bot. 95:1416Y1425.

    Article  Google Scholar 

  • Burke, D. J. and Chan, C. R. 2010. Effects of the invasive plant garlic mustard (Alliaria petiolata) on bacterial communities in a northern hardwood forest soil. Can. J. Microbiol./Rev. Can. Microbiol. 56:81Y86.

    Google Scholar 

  • Callaway, R. M. and Ridenour, W. M. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436Y443.

    Article  Google Scholar 

  • Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. 2008. Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043Y1055.

    Article  Google Scholar 

  • Callaway, R. M., Bedmar, E. J., Reinhart, K. O., Silvan, C. G., and Klironomos, J. 2011. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92:1027Y1035.

    Google Scholar 

  • Cantor, A., Hale, A., Aaron, J., Traw, M. B., and Kalisz, S. 2011. Low allelochemical concentrations detected in garlic-mustard invaded forest soils inhibit fungal growth and AMF spore germination. Biol. Inv. 13:3015Y3025.

    Article  Google Scholar 

  • Chase, W. R., M. G. Nair, A. R. Putnam, and S. K. Mishra. 1991. 2,2'-oxo-1,1'-azobenzene: Microbial transformation of rye (Secale cereale L.) allelochemical in field soils by Acinetobacter calcoaceticus: III. Journal of Chemical Ecology, 17:1575-1584.

    Google Scholar 

  • Chen, L., Yang, X., Raza, W., Li, J., Liu, Y., Qiu, M., Zhang, F., and Shen, Q. 2011. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucmbers. Appl. Micro. Biotech. 89:1653Y1663.

    Google Scholar 

  • Chiapusio, G. and Pellissier, F. 2001. Methodological setup to study allelochemical translocation in radish seedlings. J. Chem. Ecol. 27:1701Y1712.

    Article  Google Scholar 

  • Cipollini, D. and Enright, S. 2009. A powdery mildew fungus levels the playing field for garlic mustard (Alliaria petiolata) and a North American native plant. Inv. Plant Sci. Man. 2:253Y259.

    Google Scholar 

  • Cipollini, D., Stevenson, R., Enright, S., Eyles, A., and Bonello, P. 2008. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34:144Y152.

    Article  CAS  Google Scholar 

  • Dorning, M. and Cipollini, D. 2006. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184:287Y296.

    Article  Google Scholar 

  • Duke, S. O., Blair, A. C., Dayan, F. E., Johnson, R. D., Meepagala, K. M., Cook, D., and Bajsa, J. 2009. Is (−) catechin a “novel weapon” of spotted knapweed (Centaurea stoebe)? J. Chem. Ecol. 35:141Y53.

    Article  Google Scholar 

  • Džafić, E., Pongrac, P., Likar, M., Vogel-Mikuš, K., and Regvar, M. 2010. Colonization of maize (Zea mays L.) with the arbuscular mycorrhizal fungus Glomus mosseae alleviates negative effects of Festuca pratensis and Zea mays root extracts. Allelopath. J. 25:249Y258.

    Google Scholar 

  • Ehrenfeld, J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503Y523.

    Article  CAS  Google Scholar 

  • Enright, S. and Cipollini, D. 2011. Overlapping defense responses to water limitation and pathogen attack and their consequences for resistance to powdery mildew disease in garlic mustard. Alliaria petiolata Chemoecology 21:89–98.

    Article  CAS  Google Scholar 

  • Fernandez, C., Voiriot, S., Mévy, J.-P., Vila, B., Ormeño, E., Dupouyet, S., and Bousquet-Mélou, A. 2008. Regeneration failure of Pinus halepensis Mill.: The role of autotoxicity and some abiotic environmental parameters. For. Ecol. Manag. 255:2928Y2936.

    Google Scholar 

  • Fomsgaard, I. S., Mortensen, A. G., Idinger, J., Coja, T., and Blümel, S. 2006. Transformation of benzoxazinones and derivatives and microbial activity in the test environment of soil ecotoxicological tests on Poecilus cupreus and Folsomia candida. J. Ag. Food Chem. 54:1086Y1092.

    Google Scholar 

  • Frisch, T. and Moller, B. L. 2012. Possible evolution of alliarinoside from the glucosinolate pathway in Alliaria petiolata. FEBS J. 279:1545–1562. doi:10.1111/j.1742-4658.2011.08469.x.

    Google Scholar 

  • Furubayashi, A., Hiradate, S., and Fujii, Y. 2005. Adsorption and transformation reactions of L-DOPA in soils. Soil Sci. Plant Nutr. 51:819Y825.

    Article  Google Scholar 

  • Gagliardo, R. W. and Chilton, W. S. 1992. Soil transformation of 2(3H)-Benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol. 18:1683Y1691.

    Article  Google Scholar 

  • Gents, M. B., Nielsen, S. T., Mortensen, A. G., Christophersen, C., and Fomsgaard, I. S. 2005. Transformation products of 2-benzoxazolinone (BOA) in soil. Chemosphere 61:74Y84.

    Article  CAS  Google Scholar 

  • Gimsing, A. L., Sørensen, J. C., Tovgaard, L., Jørgensen, A. M. F., and Hansen, H. C. B. 2006. Degradation kinetics of glucosinolates in soil. Environ. Toxicol. Chem. 25:2038–2044.

    Article  PubMed  CAS  Google Scholar 

  • Gimsing, A. L., Poulsen, J. L., Pedersen, H. L., and Hansen, H. C. B. 2007. Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil. Environ. Sci. Technol. 41:4271Y4276.

    Article  CAS  Google Scholar 

  • Gimsing, A. L., Bælum, J., Dayan, F. E., Locke, M. A., Sejerø, L. H., and Jacobsen, C. S. 2009. Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76:1041Y1047.

    Article  CAS  Google Scholar 

  • Hauser, S. 1993. Effect of Acioa barteri, Cassia siamea, Flemingia macrophylla and Gmelina arborea leaves on germination and early development of maize and cassava. Agric. Ecosyst. Environ. 45:263Y273.

    Article  Google Scholar 

  • Heisey, R. M. 1996. Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am. J. Bot. 83:192Y200.

    Article  Google Scholar 

  • Hoagland, L., Carpenter-Boggs, L., Reganold, J. P., and Mazzola, M. 2008. Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biol. Biochem. 40:1689Y1697.

    Article  CAS  Google Scholar 

  • Inderjit 2005. Soil microorganisms: An important determinant of allelopathic activity. Plant Soil 274:227–236.

    Article  CAS  Google Scholar 

  • Inderjit and Foy, C. L. 1999. Nature of the interference mechanism of mugwort (Artemisia vulgaris). Weed Tech. 13:176Y182.

    Google Scholar 

  • Inderjit, Bajpai, D., and Rajeswari, M. S. 2010. Interaction of 8-hydroxyquinoline with soil environment mediates its ecological function. PLoS One 5:e12852.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, S., Zechmann, B., Molitor, A., Trujilll, M., Petutschnig, E., Lipka, V., Kogel, K. H., and Schaefer, P. 2011. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Phys. 156:726Y740.

    Article  CAS  Google Scholar 

  • Jensen, J., Styrishave, B., Gimsing, A. L., and Hansen, H. C. B. 2010. The toxic effects of benzyl glucosinolate and its hydrolysis product, the biofumigant benzyl isothiocyanate, to Folsomia fimetaria. Environ. Tox. Chem. 29:359Y364.

    Article  CAS  Google Scholar 

  • Johansson, J. F., Paul, L. R., and Finlay, R. D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Micro. Ecol. 48:1Y13.

    Google Scholar 

  • Johansen, H., Rasmussen, L. H., Olsen, C. E., and Hansen, H. C. B. 2007. Rate of hydrolysis and degradation of the cyanogenic glycoside—dhurrin—in soil. Chemosphere 67:259Y266.

    Article  CAS  Google Scholar 

  • Jose, S. 2002. Black walnut allelopathy: current state of the science, pp. 149–172, in A. U. Mallik and Inderjit (eds.), Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Birkhäuser Verlag, Basel.

    Chapter  Google Scholar 

  • Kaur, H., Kaur, R., Kaur, S., Baldwin, I. T., and Inderjit 2009. Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS Biol. 4:e4700.

    Google Scholar 

  • Kimmons, C. A., Gwinn, K. D., and Bernard, E. C. 1990. Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Dis. 74:75Y761.

    Article  Google Scholar 

  • Kloepper, J. W., Ryu, C.-M., and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259Y1266.

    Article  Google Scholar 

  • Knop, M., Pacyna, S., Voloshchuk, N., Kant, S., Müllenborn, C., Steiner, U., Kirchmair, M., Wcherer, H. W., and Schulz, M. 2007. Zea mays: Benzoxazolinone detoxification under sulfur deficiency conditions—a complex allelopathic alliance including endophytic Fusarium verticillioides. J. Chem. Ecol. 33:225Y237.

    Article  CAS  Google Scholar 

  • Koch, A. M., Antunes, P. M., Barto, E. K., Cipollini, D., Mummey, D. L., and Klironomos, J. N. 2011. The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol. Inv. 13:1627Y1639.

    Google Scholar 

  • Kong, C., Hu, F., Xu, T., and Lu, Y. 1999. Allelopathic potential and chemical constituents of volatile oil from Ageratum conyzoides. J. Chem. Ecol. 25:2347Y2356.

    Article  Google Scholar 

  • Kong, C., Hu, F., and Xu, X. 2002. Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. J. Chem. Ecol. 28:1173Y1182.

    Article  Google Scholar 

  • Kong, C. H., Zhao, H., Xu, X. H., Wang, P., and Gu, Y. 2007. Activity and allelopathy of soil of flavone O-glycosides from rice. J. Ag. Food Chem. 55:6007Y6012.

    Article  CAS  Google Scholar 

  • Kong, C. H., Wang, P., Gu, Y., Zu, X. H., and Wang, M. L. 2008. Fate and impact on microorganisms of rice allelochemicals in paddy soil. J. Ag. Food Chem. 56:5043Y5049.

    Google Scholar 

  • Kulmatiski, A. and Beard, K. H. 2011. Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol. Biochem. 43:823Y830.

    Article  CAS  Google Scholar 

  • Lankau, R. A. 2011a. Intraspecific variation in allelochemisty determines an invasive species’ impact on soil microbial communities. Oecologia 165:453–463.

    Article  PubMed  Google Scholar 

  • Lankau, R. A. 2011b. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. New Phytol. 189:536Y548.

    Article  Google Scholar 

  • Lankau, R. A., Nuzzo, V., Spyreas, G., and Davis, A. S. 2009. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl. Acad. Sci. USA 106:15362–15367.

    Article  PubMed  CAS  Google Scholar 

  • Lankau, R., Wheeler, E., Bennett, A. E., and Strauss, S. Y. 2011. Plant-soil feedbacks contribute to an intransitive competitive network that promotes both genetic and species diversity. J. Ecol. 99:176Y185.

    Article  Google Scholar 

  • Larson, M. M. and Schwartz, E. L. 1980. Allelopathic inhibition of black locust, red clover, and black alder by six common herbaceous species. Forest Sci. 22:511Y520.

    Google Scholar 

  • Li, C. J., Nan, Z. B., Zhang, C. J., Zhang, C. Y., and Zhang, Y. H. 2009. Effects of endophyte infected drunken horse grass on Chinese rabbit. J. Agr. Sci. Tech. 11:90Y96.

    Google Scholar 

  • Ludwig-Muller, J., Bennett, R. N., Garcia-Garrido, J. M., and Vierheilig, H. 2002. Reduced arbuscular mycorrhizal root colonization in Tropoleum majus and Carica papaya after jasmonic acid application cannot be attributed to increased glucosinolate levels. J Plant Phys. 159:517Y523.

    Article  Google Scholar 

  • Lydon, J., Teasdale, J. R., and Chen, P. K. 1997. Allelopathic activity of annual wormwood (Artesmesia annua) and the role of artemisinin. Weed Sci. 45:807Y811.

    Google Scholar 

  • Macías, F. A., Oliveros-Bastidas, A., Marín, D., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2004. Degradation studies on benzoxazinoids. Soil degradation dynamics of 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem. 52:6402Y6413.

    Google Scholar 

  • Malinowski, D. P., Belesky, D. P., and Fedders, J. M. 1999. Endophyte infection may affect the competitive ability of tall fescue grown with red clover. J. Agron. Crop. Sci. 183:91Y101.

    Google Scholar 

  • Mallik, M. A. B. and Tesfai, K. 1988. Allelopathic effect of common weeds on soybean growth and soybean-Bradyrhizobium symbiosis. Plant Soil 112:177Y182.

    Article  Google Scholar 

  • Marler, M. J., Zabinski, C. A., and Callaway, R. M. 1999. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180Y1186.

    Article  Google Scholar 

  • Meier, C. L. and Bowman, W. D. 2008. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia 158:95Y107.

    Article  Google Scholar 

  • Miranda, M. I., Omacini, M., and Chaneton, E. J. 2011. Environmental context of endophyte symbiosis: Interacting effects of water stress and insect herbivory. Int. J. Plant Sci. 172:499Y508.

    Article  Google Scholar 

  • Mummey, D. L. and Rillig, M. C. 2006. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81Y90.

    Article  CAS  Google Scholar 

  • Nasir, H., Iqbal, Z., Hiridate, S., and Fujii, Y. 2005. Allelopathic potential of Robinia pseudo-acacia L. J. Chem. Ecol. 31:2179Y2192.

    Article  CAS  Google Scholar 

  • Niemeyer, H. M. 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochemistry 27:3349Y3358.

    Article  Google Scholar 

  • Nilsson, M.-C., Högberg, P., Zackrisson, O., and Fengyou, W. 1993. Allelopathic effects by Empetrum hermaphrodium on development and nitrogen uptake by roots and mycorrhizae of Pinus silvestris. Can. J. Bot. 71:620Y628.

    Article  Google Scholar 

  • Okumura, M., Filonow, A. B., and Waller, G. R. 1999. Use of 14 C-labeled alfalfa saponins for monitoring their fate in soil. J. Chem. Ecol. 25:257Y–2583Y.

    Article  Google Scholar 

  • Ownley, B. H., Gwinn, K. D., and Vega, F. E. 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113Y128.

    Article  Google Scholar 

  • Pollock, J. L., Kogan, L. A., Thorpe, A. S., and Holben, W. E. 2011. (±) Catechin, a root exudate of the invasive Centaurea stoebe Lam (Spotted Knapweed) exhibits bacteriostatic activity against multiple soil bacterial populations. J. Chem. Ecol. 37:1044Y1053.

    Article  CAS  Google Scholar 

  • Prati, D. and Bossdorf, O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot. 91:285Y288.

    Article  Google Scholar 

  • Pue, K. J., Blum, U., Gerig, T. M., and Shafer, S. R. 1995. Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J. Chem. Ecol. 21:833Y847.

    Article  Google Scholar 

  • Reigosa, M. J., Pedrol, N, and Gonzalez, L. 2006. Allelopathy: a physiological process with ecological implications. Springer. 637p.

  • Reinhardt, K. O. and Callaway, R. M. 2006. Soil biota and plant invasions. New Phyt. 170:445Y457.

    Google Scholar 

  • Roberts, K. J. and Anderson, R. L. 2001. Effect of garlic mustard [Alliaria petiolata (Bieb. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am. Midl. Nat. 146:146Y152.

    Article  Google Scholar 

  • Rocha, A. C. S., Garcia, D., Uetanabaro, A. P. T., Carneiro, R. T. O., Araujo, I. S., Mattos, C. R. R., and Goes-Neto, A. 2011. Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Div. 47:75Y84.

    Google Scholar 

  • Romeo, J. T. 2000. Raising the beam: moving beyond phytotoxicity. J. Chem. Ecol. 26:2011Y2014.

    Google Scholar 

  • Rudgers, J. A. and Orr, S. 2009. Non-native grass alters growth of native tree species via leaf and soil microbes. J. Ecol. 97:247Y255.

    Article  Google Scholar 

  • Sabzalian, M. R. and Mirlohi, A. 2010. Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J. Plant Nutr. Soil Sci. 173:952Y957.

    Google Scholar 

  • Sasikumar, K., Vijayalakshmi, C., and Parthiban, K. T. 2001. Allelopathic effects of four Eucalyptus species on Redgram (Cajanus cajan L.). J. Trop. Agric. 39:134Y138.

    Google Scholar 

  • Shreiner, R. P. and Koide, R. T. 1993. Mustards, mustard oils and mycorrhizas. New Phyt. 123:107Y113.

    Google Scholar 

  • Small, C. J., White, D. C., and Hargbol, B. 2010. Allelopathic influences of the invasive Ailanthus altissima on a native and a non-native herb. J. Torrey. Bot. Soc. 137:366Y372.

    Google Scholar 

  • Smith, S. E. and Read, D. J. 2008. Mycorrhizal Symbiosis. Elsevier Science Ltd, London.

    Google Scholar 

  • Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallet, S. G., Prati, D., and Klironomos, J. N. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4:727Y731.

    Article  CAS  Google Scholar 

  • Timbal, J., Gelpe, J., and Garbaye, J. 1990. Preliminary-study of the depressive effect of Molinia caerulea (L) Moench on early growth and mycorrhizal status of Quercus rubra seedlings. Ann. Sci. Forest. 47:643Y649.

    Article  Google Scholar 

  • Understrup, A. G., Ravnskov, S., Hansen, H. C. B., and Fomsgaard, I. S. 2005. Biotransformation of 2-benzoxazolinone to 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-phenoxazin-3-one in soil. J. Chem. Ecol. 31:1205Y1222.

    Article  CAS  Google Scholar 

  • Vásquez-De-aldana, B. R., Romo, M., García-Ciudad, A., Petisco, C., and García-Criado, B. 2011. Infection with fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Ann. Appl. Biol. 159:28Y–290Y.

    Article  Google Scholar 

  • Vaughn, S. F. and Berhow, M. A. 1999. Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J. Chem. Ecol. 25:2495Y2504.

    Article  Google Scholar 

  • Vierheilig, H., Bennett, R., Kiddle, G., Kaldorf, M., and Ludwig-Muller 2000. Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol. 146:343Y352.

    Article  Google Scholar 

  • Voll, E., Franchini, J. C., da Cruz, R. T., Gazziero, D. L. P., Brighenti, A. M., and Adegas, F. S. 2004. Chemical interaction of Brachiaria plantaginea with Commelina bengalensis and Acanthospermum hispidum in soybean cropping systems. J. Chem. Ecol. 30:1467Y1475.

    Article  Google Scholar 

  • Walker, A. and Welch, S. J. 1991. Enhanced degradation of some soil-applied herbicides. Weed Res. 31:49Y57.

    Article  Google Scholar 

  • Weidenhamer, J. D. and Romeo, J. T. 2004. Allelochemicals of Polygonella myriophylla: chemistry and soil degradation. J. Chem. Ecol. 30:1067Y1082.

    Google Scholar 

  • Weidenhamer, J. D. and Callaway, R. M. 2010. Direct and indirect effects on soil chemistry and ecosystem function. J. Chem. Ecol. 36:59Y69.

    Article  CAS  Google Scholar 

  • Willis, R. J. 2007. The history of allelopathy. Springer, 316 p.

  • Wolfe, B. E., Rodgers, V. L., Stinson, K. A., and Pringle, A. 2008. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol. 96:777Y783.

    Article  Google Scholar 

  • Yue, Q., Bacon, C. W., and Richardson, M. D. 1998. Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by Fusarium moniliforme. Phytochemistry 48:451Y454.

    Article  Google Scholar 

  • Zabinski, C. A., Quinn, L., and Callaway, R. M. 2002. Phosphorous uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Funct. Ecol. 16:758Y765.

    Article  Google Scholar 

  • Zhang, Q. 1997. Effects of soil extracts from repeated plantation woodland of Chinese-fir on microbial activities and soil nitrogen minerilization dynamics. Plant Soil 191:205Y212.

    Article  Google Scholar 

  • Zhang, Z.-Y., L.-P. Pan, and H.-H. Li. 2010. Isolation, identification, and characterization of soil microbes which degrade phenolic compounds. Journal of Applied Microbiology, 108:1839-1849.

    Google Scholar 

  • Zhu, X., Zhang, J., and Ma, K. 2011. Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One 6:e25393.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Ohio Plant Biotechnology Consortium, USDA-APHIS, and Wright State University (DC and CR), as well as the Freie Universität—Berlin (EKB) during the preparation of this manuscript. Comments by two anonymous reviewers substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Cipollini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipollini, D., Rigsby, C.M. & Barto, E.K. Microbes as Targets and Mediators of Allelopathy in Plants. J Chem Ecol 38, 714–727 (2012). https://doi.org/10.1007/s10886-012-0133-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0133-7

Keywords

Navigation