Skip to main content
Log in

Elevated CO2 Increases Constitutive Phenolics and Trichomes, but Decreases Inducibility of Phenolics in Brassica rapa (Brassicaceae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Increasing global atmospheric CO2 has been shown to affect important plant traits, including constitutive levels of defensive compounds. However, little is known about the effects of elevated CO2 on the inducibility of chemical defenses or on plant mechanical defenses. We grew Brassica rapa (oilseed rape) under ambient and elevated CO2 to determine the effects of elevated CO2 on constitutive levels and inducibility of carbon-based phenolic compounds, and on constitutive trichome densities. Trichome density increased by 57% under elevated CO2. Constitutive levels of simple, complex, and total phenolics also increased under elevated CO2, but inducibility of each decreased. Induction of simple phenolics occurred only under ambient CO2. Although induction of complex and total phenolics occurred under both ambient and elevated CO2, the damage-induced increases were 64% and 75% smaller, respectively, under elevated CO2. Constitutive phenolic levels were positively correlated with leaf C:N ratio, and inducibility was positively correlated with leaf N and negatively correlated with leaf C:N ratio, as would be expected if inducibility were constrained by nitrogen availability under elevated CO2. We conclude that B. rapa is likely to exhibit higher constitutive levels of both chemical and mechanical defenses in the future, but is also likely to be less able to respond to herbivore damage by inducing phenolic defenses. To our knowledge, this is only the second study to report a negative effect of elevated CO2 on the inducibility of any plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrell, J., Anderson, P., Oleszek, W., Stochmal, A., and Agrell, C. 2004. Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. J. Chem. Ecol. 30:2309–2324.

    Article  PubMed  CAS  Google Scholar 

  • Alley, R., Berntsen, T., Bindoff, N., Chen, Z., Chidthaisong, A., Friedlingstein, P., Gregory, J., Hegerl, G., Heimann, M., Hewitson, B., Hoskins, B., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Qin, D., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Solomon, S., Somerville, R., Stocker, T., Stott, P., Stouffer, R., Whetton, P., Wood, R., and Wratt, D. 2007. Climate Change 2007: The Physical Science Basis, Summary for Policymakers. Intergovernmental Panel on Climate Change. Paris, France.

    Google Scholar 

  • Bazin, A., Goverde, M., Erhardt, A., and Shykoff, J. 2002. Influence of atmospheric CO2 enrichment on induced defense and growth compensation after herbivore damage in Lotus corniculatus. Ecol. Entomol. 27:271–278.

    Article  Google Scholar 

  • Bidart-Bouzat, M., Mithen, R., and Berenbaum, M. 2005. Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia. 145:415–424.

    Article  PubMed  Google Scholar 

  • Boege, K. and Marquis, R. 2005. Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol. Evol. 20:441–448.

    Article  PubMed  Google Scholar 

  • Conway, T. and Tans, P. 2011. NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/).

  • Cotrufo, M. F., Ineson, P., and Scott, A. 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol. 4:43–54.

    Article  Google Scholar 

  • Gayler, S., Grams, T., Heller, W., Treutter, D., and Priesack, E. 2008. A dynamical model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Ann. Bot. 101:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  • Ghasemzadeh, A., Jaafar, H., and Rahmat, A. 2010. Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules. 15:7907–7922.

    Article  PubMed  CAS  Google Scholar 

  • Goverde, M., Erhardt, A., and Stöcklin, J. 2004. Genotype-specific response of a lycaenid herbivore to elevated carbon dioxide and phosphorus availability in calcareous grassland. Oecologia. 139:383–391.

    Article  PubMed  Google Scholar 

  • Hartley, S., Jones, C., Couper, G., and Jones, T. 2000. Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Global Change Biol. 6:497–506.

    Article  Google Scholar 

  • Haukioja, E., Ossipov, V., and Lempa, K. 2002. Interactive effects of leaf maturation and phenolics on consumption and growth of a geometrid moth. Entomol. Exp. Appl. 104:125–136.

    Article  CAS  Google Scholar 

  • Haviola, S., Kapari, L., Ossipov, V., Rantala, M., Ruuhola, T., and Haukioja, E. 2007. Foliar phenolics are differently associated with Epirrita autumna growth and immunocompetence. J. Chem. Ecol. 33:1013–1023.

    Article  PubMed  CAS  Google Scholar 

  • Howe, G. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.

  • Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., and Denno, R. 2008. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology. 89:392–406.

    Article  PubMed  Google Scholar 

  • Karban, R. and Baldwin, I. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois, USA.

    Google Scholar 

  • Karowe, D. 1989. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry. Oecologia. 80:507–512.

    Article  Google Scholar 

  • Karowe, D. 2007. Are legume-feeding herbivores buffered against direct effects of elevated CO2 on host plants? A test with the sulfur butterfly, Colias philodice. Global Change Biol. 13:2045–2051.

    Article  Google Scholar 

  • Karowe, D., Seimens, D., and Mitchell-Olds, T. 1997. Species-specific response of glucosinolate content to elevated atmospheric CO2. J. Chem. Ecol. 23:2569–2582.

    Article  CAS  Google Scholar 

  • Lake, J. and Wade, R. 2009. Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J. Exp. Bot. 60:3123–3131.

    Article  PubMed  CAS  Google Scholar 

  • Lau, J., Strengbom, J., Stone, L., Reich, P., and Tiffin, P. 2008. Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions. Ecology. 89:226–236.

    Article  PubMed  Google Scholar 

  • Lindroth, R. 2010. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J. Chem. Ecol. 36:2–21.

    Article  PubMed  CAS  Google Scholar 

  • Lindroth, R. and Kinney, K. 1998. Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. J. Chem. Ecol. 24:1677–1695.

    Article  CAS  Google Scholar 

  • Littell, R., Henry, P., and Ammerman, C. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 76:1216–1231.

    PubMed  CAS  Google Scholar 

  • Lou, Y. and Baldwin, I. 2004. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant Physiol. 135:496–506.

    Article  PubMed  CAS  Google Scholar 

  • Marks, M. 1997. Molecular genetic analysis of trichome development in Arabidopsis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:137–163.

    Article  PubMed  CAS  Google Scholar 

  • Musser, R., Farmer, E., Peiffer, M., Williams, S., and Felton, G. 2006. Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect-plant interactions. J. Chem. Ecol. 32:981–992.

    Article  PubMed  CAS  Google Scholar 

  • O’neill, B., Zangerl, A., Dermody, O., Bilgin, D., Casteel, C., Zavala, J., Delucia, E., and Berenbaum, M. 2010. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus). J. Chem. Ecol. 36:35–45.

    Article  PubMed  Google Scholar 

  • Ossipov, V., Haukioja, E., Ossipova, S., Hanhimäki, S., and Pihlaja, K. 2001. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem. Sys. Eco. 29:223–240.

    Article  CAS  Google Scholar 

  • Paoletti, E., Seufert, G., Della Rocca, G., and Thomsen, H. 2007. Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring. Environ. Pollut. 147:516–524.

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas, J., Estiarte, M., and Llusià, J. 1997. Carbon-based secondary compounds at elevated CO2. Photosynthetica. 33:313–316.

    Article  Google Scholar 

  • Plett, J., Wilkins, O., Campbell, M., Ralph, S., and Regan, S. 2010. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant J. 64:419–432.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, S., Rogers, H., Prior, S., and Peterson, C. 1999. Elevated CO2 and plant structure: a review. Global Change Biol. 5:807–837.

    Article  Google Scholar 

  • Ralph, S., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J., Nelson, C., Butterfield, Y., Kirkpatrick, R., Liu, J., Jones, S., Marra, M., Douglas, C., Ritland, K., and Bohlman, J. 2006. Conifer defence against insects: Microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ. 29:1545–1570.

    Article  PubMed  Google Scholar 

  • Raymer, P. 2002. Canola: An emerging oilseed crop, pp. 122–126, in J. Janick and A. Whipkey (eds.), Trends in New Crops and New Uses. ASHS Press, Alexandria, Virginia, USA.

    Google Scholar 

  • Reymond, P., Weber, H., Damond, M., and Farmer, E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 12:707–719.

    Article  PubMed  CAS  Google Scholar 

  • Riikonen, J., Percy, K., Kivimaenpaa, M., Kubiske, M., Nelson, N., Vapaavuori, E., and Karnosky, D. 2010. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. Environ. Pollut. 158:1029–1035.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, A., Stiling, P., Moon, D., Cattell, M., and Drake, B. 2004. Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2. J. Chem. Ecol. 30:1143–1152.

    Article  PubMed  CAS  Google Scholar 

  • Roth, S., Lindroth, R., Volin, J., and Kruger, E. 1998. Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Global Change Biol. 4:419–430.

    Article  Google Scholar 

  • SAS Institute. 2000. The SAS system for Windows Version 8e. SAS Institute, Cary, North Carolina, USA.

    Google Scholar 

  • Simmons, A. and Gurr, G. 2005. Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric. For. Entomol. 7:265–276.

    Article  Google Scholar 

  • Stiling, P. and Cornelissen, T. 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol. 13:1823–1842.

    Article  Google Scholar 

  • Traw, M. and Dawson, T. 2002. Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants. Environ. Entomol. 31:714–722.

    Article  Google Scholar 

  • Tuchman, N., Wahtera, K., Wetzel, R., Russo, N., Kilbane, G., Sasso, L., and Teeri, J. 2003. Nutritional quality of leaf detritus altered by elevated atmospheric CO2: effects on development of mosquito larvae. Freshwater Biol. 48:1432–1439.

    Article  Google Scholar 

  • Vannette, R. and Hunter, M. 2011. Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Global Change Biol. 17:1277–1288.

    Article  Google Scholar 

  • Zavala, J., Casteel, C., Delucia, E., and Berenbaum, M. 2008. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc. Natl. Acad. Sci. U. S. A. 105:5129–5133.

    Article  PubMed  CAS  Google Scholar 

  • Zvereva, E. and Kozlov, M. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Global Change Biol. 12:27–41

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mike Grant for assistance with phenolic assays, John Landosky for providing plants, Justin Knight for assisting with trichome counts, the University of Michigan Biological Station for logistical support, and two anonymous reviewers for helpful comments. This work was supported by National Science Foundation grant DEB-9796250 and United States Department of Agriculture grant NRICGP-9706410 to D. Karowe, and National Science Foundation Research Experience for Undergraduates grant DBI-9731615 to J. Teeri and D. Karowe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Karowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karowe, D.N., Grubb, C. Elevated CO2 Increases Constitutive Phenolics and Trichomes, but Decreases Inducibility of Phenolics in Brassica rapa (Brassicaceae). J Chem Ecol 37, 1332–1340 (2011). https://doi.org/10.1007/s10886-011-0044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-0044-z

Key Words

Navigation