Skip to main content
Log in

Insect-synthesised Retronecine Ester Alkaloids: Precursors of the Common Arctiine (Lepidoptera) Pheromone Hydroxydanaidal

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many pyrrolizidine alkaloid (PA)-adapted insects convert PAs sequestered from their larval host plants into “insect-PAs” in which the acid components of the alkaloids are replaced by small, branched aliphatic 2-hydroxy acids of insect origin. It has been proposed that insect-PAs are precursors of the pheromone hydroxydanaidal in male Estigmene acrea moths, but it is not clear why they are specifically required or what the structural features or chemical properties are that make insect-PAs more suitable for conversion into hydroxydanaidal than superficially similar alkaloids of plant origin. Evidence is presented that insect-PAs are also precursors of hydroxydanaidal in the polyphageous arctiine, Creatonotos transiens, and a new biosynthetic pathway to hydroxydanaidal is proposed that has a mandatory requirement for insect-PAs as intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aplin, R. T., Benn, H., and Rothschild, M. 1968. Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobaeae L.). Nature 219:747–748.

    Article  CAS  Google Scholar 

  • Bell, T. W., Boppré, M., Schneider, D., and Meinwald, J. 1984. Stereochemical course of pheromone biosynthesis in the arctiid moth, Creatonotos transiens. Experientia 40:713–714.

    Article  PubMed  CAS  Google Scholar 

  • Bergomaz, R., and Boppré, M. 1986. A simple instant diet for rearing Arctiidae and other moths. J. Lep. Soc. 40:131–137.

    Google Scholar 

  • Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26.

    Article  Google Scholar 

  • Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J. Chem. Ecol. 16:165–185.

    Article  Google Scholar 

  • Boppré, M., and Schneider, D. 1985. Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male Creatonotos moths (Lep.: Arctiidae). J. Comp. Physiol. 157:569–577.

    Article  Google Scholar 

  • Boppré, M., Colegate, S. M., and Edgar, J. A. 2005. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agric. Food Chem. 53:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Brehm, G., Hartman, T., and Willmott, K. 2007. Pyrrolizidine alkaloids and pharmacophagous Lepidoptera visitors of Prestonia amabilis (Apocynaceae) in a montane rain forest in Ecuador. Ann. Miss. Bot. Gard. 94:463–473.

    Google Scholar 

  • Bull, L. B., Culvenor, C. C. J., and Dick, A. T. 1968. The Pyrrolizidine Alkaloids. North-Holland Publ., Amsterdam.

    Google Scholar 

  • Conner, W. E., and Weller, S. J. 2004. A quest for alkaloids: The curious relationship between tiger moths and plants containing pyrrolizidine alkaloids, Advances in Insect Chemical Ecology. pp. 248–282, in R. T. Cardé, and J. Millar (eds.). Cambridge Univ. Press, Cambridge/MA.

    Google Scholar 

  • Culvenor, C. C. J., Edgar, J. A., Smith, L. W., and Tweedale, H. J. 1970a. Dihydropyrrolizines. III: Preparation and reactions of derivatives related to pyrrolizidine alkaloids. Aust. J. Chem. 23:1853–1867.

    Article  CAS  Google Scholar 

  • Culvenor, C. C. J., Edgar, J. A., Smith, L. W., and Tweedale, H. J. 1970b. Dihydropyrrolizines. IV: Manganese dioxide oxidation of 1,2-dehydropyrrolizidines. Aust. J. Chem. 23:1869–1879.

    Article  CAS  Google Scholar 

  • Davidson, R. B., Baker, C., McElveen, M., and Conner, W. E. 1997. Hydroxydanaidal and the courtship of Haploa (Lepidoptera: Arctiidae). J. Lep. Soc. 51:228–294.

    Google Scholar 

  • Edgar, J. A., Culvenor, C. C. J., and Pliske, T. E. 1976. Isolation of a lactone, structurally related to the esterifying acids of pyrrolizidine alkaloids, from the costal fringes of male Ithomiinae. J. Chem. Ecol. 2:263–270.

    Article  CAS  Google Scholar 

  • Edgar, J. A., Culvenor, C. C. J., Cockrum, P. A., Smith, L. W., and Rothschild, M. 1980. Callimorphine: Identification and synthesis of the cinnibar moth ‘metabolite'. Tetrahedron Lett. 21:1383–1384.

    Article  CAS  Google Scholar 

  • Ehmke, A., Witte, L., Biller, A., and Hartmann, T. 1990. Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L. Z. Naturforsch. 45c:1185–1192.

    Google Scholar 

  • Eisner, T., Rossini, C., Gonzalez, A., Iyengar, V. K., Siegler, M. V. S., and Smedley, S. R. 2002. Paternal investment in egg defence, Chemoecology of Insect Eggs and Egg Deposition. pp. 91–116, in M. Hilker, and T. Meiners (eds.). Blackwell, Oxford.

    Google Scholar 

  • Giordan, M., Custodio, R., and Trigo, J. R. 1996. Pyrrolizidine alkaloids necine bases: ab initio, semiempirical and molecular approaches to molecular properties. J. Comput. Chem. 17:156–166.

    Article  CAS  Google Scholar 

  • Hartmann, T. 1999. Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495.

    Article  CAS  Google Scholar 

  • Hartmann, T., and Ober, D. 2000. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Topics Current Chem. 209:207–243.

    Article  CAS  Google Scholar 

  • Hartmann, T., and Witte, L. 1995. Pyrrolizidine alkaloids: Chemical, biological and chemoecological aspects, Alkaloids: Chemical and Biological Perspectives. pp. 155–233, in S. W. Pelletier (ed.). Pergamon, Oxford.

    Google Scholar 

  • Hartmann, T., Biller, A., Witte, L., Ernst, L., and Boppré, M. 1990. Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem. Syst. Ecol. 18:549–554.

    Article  CAS  Google Scholar 

  • Hartmann, T., Theuring, C., Witte, L., and Pasteels, J. M. 2001. Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem. Mol. Biol. 31:1041–1056.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, T., Theuring, C., Witte, L., Schulz, S., and Pasteels, J. M. 2003a. Biochemical processing of plant acquired pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem. Mol. Biol. 33:515–523.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, T., Theuring, C., and Bernays, E. A. 2003b. Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J. Chem. Ecol 29:2603–2608.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, T., Theuring, C., Beuerle, T., Ernst, L., Singer, M. S., and Bernays, E. A. 2004a. Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. J. Chem. Ecol. 30:229–254.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, T., Theuring, C., Beuerle, T., and Bernays, E. A. 2004b. Phenological fate of plant-acquired pyrrolizidine alkaloids in the polyphagous arctiid Estigmene acrea. Chemoecology 14:207–216.

    Article  CAS  Google Scholar 

  • Hartmann, T., Theuring, C., Beuerle, T., Klewer, N., Schulz, S., Singer, M. S., and Bernays, E. A. 2005a. Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. Insect Biochem. Mol. Biol. 35:391–411.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, T., Theuring, C., Beuerle, T., Bernays, E. A., and Singer, M. S. 2005b. Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem. Mol. Biol. 35:1083–1099.

    Article  PubMed  CAS  Google Scholar 

  • Mattocks, and A. R. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic, London.

    Google Scholar 

  • Molyneux, R. J., and Roitman, J. N. 1980. Specific detection of pyrrolizidine alkaloids on thin-layer chromatograms. J. Chromatogr. 195:412–415.

    Article  CAS  Google Scholar 

  • Naumann, C., Hartmann, T., and Ober, D. 2002. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc. Natl. Acad. Sci. USA 99:6085–6090.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, R., Schulz, S., Kim, C. S., Fukami, H., Kuwahara, Y., Honda, K., and Hayashi, N. 1996. Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J. Chem. Ecol. 22:949–971.

    Article  CAS  Google Scholar 

  • Pasteels, J. M., Termonia, A., Windsor, D., Witte, L., Theuring, C., and Hartmann, T. 2001. Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120.

    Article  CAS  Google Scholar 

  • Pasteels, J. M., Theuring, C., Witte, L., and Hartmann, T. 2003. Sequestration and metabolism of protoxic pyrrolizidine alkaloids by larvae of the leaf beetle Platyphora boucardi and their transfer via pupae into defensive secretions of adults. J. Chem. Ecol. 29:337–355.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S. 1998. Insect-plant interactions—metabolism of plant compounds to pheromones and allomones by Lepidoptera and leaf beetles. Eur. J. Org. Chem. 1998:13–20.

    Article  Google Scholar 

  • Schulz, S., Francke, W., Boppré, M., Eisner, T., and Meinwald, J. 1993. Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proc. Natl. Acad. Sci. USA 90:6834–6838.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S., Beccaloni, G., Brown, K. S., Boppré, M., Freitas, A. V. L., Ockenfels, P., and Trigo, J. R. 2004. Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae). Biochem. System. Ecol. 32:699–713.

    Article  CAS  Google Scholar 

  • Trigo, J. R., Brown, K. S. Jr., Henriques, S. A., and Barata, L. E. S. 1996. Quantitative patterns of pyrrolizidine alkaloids in Ithomiinae butterflies. Biochem. Syst. Ecol. 24:181–188.

    Article  CAS  Google Scholar 

  • Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 68:557–578.

    Article  Google Scholar 

  • Werck-Reichhart, D. and Feyereisen, R. 2000. Cytochromes P450: a success story. Genome Biol. 1:3003.1–3003.9.

  • Wink, M., Schneider, D., and Witte, L. 1988. Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth, Creatonotos transiens: stereochemical conversion of heliotrine. Z. Naturforsch. 43c:737–741.

    Google Scholar 

Download references

Acknowledgments

Thanks to Monika Siegel and Anita Kiesel for technical support and Steven M. Colegate for LC-ESI-MS confirming molecular weight data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Boppré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgar, J.A., Boppré, M. & Kaufmann, E. Insect-synthesised Retronecine Ester Alkaloids: Precursors of the Common Arctiine (Lepidoptera) Pheromone Hydroxydanaidal. J Chem Ecol 33, 2266–2280 (2007). https://doi.org/10.1007/s10886-007-9378-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9378-y

Keywords

Navigation