Skip to main content
Log in

The Effects of a Naturally Produced Benzoquinone on Microbes Common to Flour

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many species of insects are known to produce and secrete benzoquinone derivatives. These compounds are usually defined as “defense chemicals.” However, in many cases, it has not been determined what the chemicals are meant to defend against. Tribolium beetles produce up to three benzoquinones, but their specific function is not known. In this experiment, one of the derivatives, methyl-1,4-benzoquinone (MBQ) was tested for its effectiveness for one of its purported functions as an antimicrobial. Methyl-1,4-benzoquinone was added in three concentrations (0.3, 30, and 150 μg/ml) to the liquid media of three species of Bacillus bacteria and eight species from four genera of yeasts, and the effect on their growth was monitored. The presence of MBQ altered growth in all species. The bacteria responded more negatively than the yeasts. All bacteria species showed reduced growth at all levels of MBQ. Yeasts were more tolerant to the presence of the chemical, and two species, Saccharomyces microellipsoides and Pichia burtonii, actually showed increased growth at the lowest level of MBQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Razek, A. S. 2002. Comparative study on the effect of two Bacillus thuringiensis strains of the same serotype on three coleopteran pests of stored wheat. J. Egypt. Soc. Parasitol. 32:415–424.

    PubMed  CAS  Google Scholar 

  • Abdel-Razek, A. S., Salama, H. S., White, N. D. G., and Morris, O. N. 1999. Effect of Bacillus thuringiensis on feeding and energy use by Plodia interpunctella (Lepidoptera: Pyralidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). Can. Entomol. 131:433–440.

    Article  Google Scholar 

  • Blum, M. S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.

    Google Scholar 

  • Bouchard, P., Hsiung, C. C., and Yaylayan, V. A. 1997. Chemical analysis of defense secretions of Siploidea sipylus and their potential use as repellents against rats. J. Chem. Ecol. 23:2049–2057.

    Article  CAS  Google Scholar 

  • Chapman, R. N. 1926. Inhibiting the process of metamorphosis in the confused flour beetle (Tribolium confusum Duval). J. Exp. Zool. 45:293–299.

    Article  CAS  Google Scholar 

  • Charbonneau, R., and Lemonde, A. 1962. Indeterminate growth factors in brewer’s yeast. IV. Relation between these factors and the nitrogen levels in the diet of Tribolium confusum Duval larvae. Arch. Int. Physiol. Biochim. 70:379–392.

    PubMed  CAS  Google Scholar 

  • Dettner, K. 1993. Dabbing and shooting of benzo- and napthoquinone secretions: defensive strategies of bark-inhabiting Aleocharine (Col.: Staphylinidae) and Tenebrionid (Col.: Tenebrionidae) beetle larvae. J. Chem. Ecol. 19:1337–1354.

    Article  CAS  Google Scholar 

  • Dunkel, F. V. 1988. The relationship of insects to the deterioration of stored grain by fungi. Int. J. Food Microbiol. 7:227–244.

    Article  PubMed  CAS  Google Scholar 

  • El-Mofty, M. M., Khudoley, V. V., Sakr, S. A., and Fathala, N. G. 1992. Flour infested with Tribolium castaneum, biscuits made of this flour, and 1,4-benzoquinone induce neoplastic lesions in Swiss Albino mice. Nutr. Cancer 17:97–104.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, M., Rapoport, H., and Sokoloff, A. 1965. Odorous secretion of normal and mutant Tribolium confusum. Science 150:632–633.

    Article  PubMed  CAS  Google Scholar 

  • Farmiloe, F. J., Concord, S. J., Coppock, J. B. M., and Ingram, M. 1954. The survival of Bacillus subtilis spores in the making of bread. J. Sci. Food Agric. 5:292–304.

    Article  CAS  Google Scholar 

  • Faust, R. M. 1974. Bacterial diseases, pp. 87–183, in G. E. Cantwell (ed.). Insect Diseases. Marcel Dekker, New York.

    Google Scholar 

  • Geiger, W. B. 1946. The mechanism of the antibacterial action of quinones and hydroquinones. Arch. Biochem. 11:23–32.

    CAS  Google Scholar 

  • Happ, G. M. 1968. Quinone and hydrocarbon production in the defensive glands of Eleodes longicollis and Tribolium castaneum (Coleoptera, Tenebriondae). J. Insect Physiol. 14:1821–1837.

    Article  CAS  Google Scholar 

  • Kreig, A. 1981. The genus Bacillus: insect pathogens, in M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (eds.). The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria. Springer-Verlag, Berlin.

    Google Scholar 

  • Kumari, S. M., and Neelgund, Y. F. 1985. Preliminary infectivity tests using six bacterial formulations against the red flour beetle, Tribolium castaneum. J. Invertebr. Pathol. 46:198–1999.

    Article  Google Scholar 

  • Kurtzman, C. P., Wickerham, L. J., and Hesseltine, C. W. 1970. Yeasts from wheat and flour. Mycologia 62:542–547.

    Article  PubMed  CAS  Google Scholar 

  • Norris, J. R., Berkeley, R. C. W., Logan, N. A., and O’donnell, A. G. 1981. The genera Bacillus and Sporolactobacillus, pp. 1709–1742, in M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (eds.). The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria. Springer-Verlag, Berlin.

    Google Scholar 

  • Offhaus, K. 1952. Vitamin requirements of the confused flour beetle (Tribolium confusum Duval). I. The water-insoluble yeast fraction required by Tribolium confusum. Z. Vitam. Horm. Fermentforsch. 4:555–563.

    PubMed  CAS  Google Scholar 

  • Okagbue, R. N. 1990. Identification of yeasts and aerobic spore forming bacteria from cassava flour. Food Microbiol. 7:27–32.

    Article  Google Scholar 

  • Pappas, P. W., and Morrison, S. E. 1995. Benzoquinones of the beetles, Tribolium castaneum and Tribolium confusum. Prep. Biochem. 25:155–168.

    PubMed  CAS  Google Scholar 

  • Pappas, P. W., and Wardrop, S. M. 1996. Quantification of benzoquinones in the flour beetles, Tribolium castaneum and Tribolium confusum. Prep. Biochem. Biotechnol. 26:53–66.

    PubMed  CAS  Google Scholar 

  • Prendeville, H. R., and Stevens, L. 2002. Microbe inhibition by Tribolium flour beetles varies with beetle species, strain, sex, and microbe group. J. Chem. Ecol. 28:1183–1190.

    Article  PubMed  CAS  Google Scholar 

  • Richter, K. S., Dorneanu, E., Eskridge, K. M., and Rao, C. S. 1993. Microbiological quality of flours. Cereal Foods World 38:367–369.

    Google Scholar 

  • Rogers, R. F. 1978. Bacillus isolates from refrigerated doughs, wheat flour, and wheat. Cereal Chem. 55:671–674.

    Google Scholar 

  • Roth, L. M., and Howland, R. 1941. Studies on the gaseous secretion of Tribolium confusum Duval. I. Abnormalities produced in Tribolium confusum Duval by exposure to a secretion given off by the adults. Ann. Entomol. Soc. Am. 34:151–171.

    CAS  Google Scholar 

  • Sall, J., Creighton, L., and Lehman, A. 2006. JMP Start Statistics. Thomson Learning, Cary

    Google Scholar 

  • Sorokulova, I. B., Reva, O. N., Smirnov, V. V., Pinchuk, I. V., Lapa, S. V., and Urdaci, M. C. 2003. Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Lett. Appl. Microbiol. 37:169–173.

    Article  PubMed  CAS  Google Scholar 

  • Via, S., and Conner, J. 1995. Evolution in heterogeneous environments: genetic variability within and across different grains in Tribolium castaneum. Heredity 74:80–90.

    PubMed  Google Scholar 

  • Weatherston, J. 1967. The chemistry of arthropod defense substances. Q. Rev. Chem. Soc. Lond. 21:287–313.

    Article  CAS  Google Scholar 

  • Williams, G. C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton.

    Google Scholar 

  • Yamada, Y., and Hosaka, K. 1977. A convenient synthesis of alkyl-substituted p-benzoquinones from p-alkylphenols. Synthesis 143:53–54.

    Article  Google Scholar 

  • Yezerski, A., Gilmor, T. P., and Stevens, L. 2000. Variation in the production and distribution of substituted benzoquinone compounds among genetic strains of the confused flour beetle, Tribolium confusum. Physiol. Biochem. Zool. 73:192–199.

    Article  PubMed  CAS  Google Scholar 

  • Yezerski, A., Gilmor, T. P., and Stevens, L. 2004. Genetic analysis of benzoquinone production in Tribolium confusum. J. Chem. Ecol. 30:1034–1044.

    Article  Google Scholar 

  • Yezerski, A., Cussatt, G., Glick, D. L., and Evancho, M. 2005. The effects of the presence of stored product pests on the microfauna of a flour community. J. Appl. Microbiol. 98:507–515.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Yezerski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yezerski, A., Ciccone, C., Rozitski, J. et al. The Effects of a Naturally Produced Benzoquinone on Microbes Common to Flour. J Chem Ecol 33, 1217–1225 (2007). https://doi.org/10.1007/s10886-007-9293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9293-2

Keywords

Navigation