Skip to main content
Log in

Comparison of Glass Vessels and Plastic Bags for Enclosing Living Plant Parts for Headspace Analysis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants release volatile chemicals into their surrounding air space that can affect the physiology of neighboring plants and influence the behavior of insects. In studying these interactions, it is desirable to collect volatiles from plants that have not been excised and are growing under as natural conditions as possible. We compared a vessel of borosilicate glass and Nylon-6 or polyester [poly(ethyleneterephthalate) or PET] cooking bags for enclosing plants during collection of volatiles. A push–pull airflow system was used, and volatiles were trapped on Tenax TA and analyzed by gas chromatography after thermal desorption. Low levels of impurities were found for the glass vessel and polyester bags. Nylon bags contained higher levels and more impurities. Recoveries of standards of 10 plant volatiles were measured in static and dynamic systems. In a static air system, there was good recovery only from the glass vessel. In a dynamic system, there was generally good recovery from both the glass vessel and polyester bags. Recoveries of α-pinene and (Z)-jasmone were poor throughout. The former was shown to have a very low breakthrough volume on the Tenax TA adsorbent, and the latter may be strongly adsorbed on glass. All three materials were essentially transparent in the IR and visible (photosynthetic) range but with significantly different absorptions in the UV range. In a simulated dynamic entrainment in full sunlight, internal vessel temperatures were higher than ambient by up to 9.5°C in the glass vessel and 7.5°C in the polyester bag. Lower increases in temperature relative to ambient (<1°C) were recorded when entrainments were conducted in the shade. In a field trial, the profiles of volatiles collected from an apple tree infested with rosy apple aphid using a glass vessel and a polyester bag were similar. Polyester bags are recommended as more convenient than glass vessels for the enclosure of plants during the collection of volatiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agelopoulos, N. G. and Pickett, J. A. 1998. Headspace analysis in chemical ecology: Effects of different sampling methods on ratios of volatile compounds present in headspace samples. J. Chem. Ecol. 24:1161–1172.

    Article  CAS  Google Scholar 

  • Agelopoulos, N. G., Chamberlain, K., and Pickett, J. A. 2000. Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: Variability of quantities and stability of ratios. J. Chem. Ecol. 26:497–511.

    Article  CAS  Google Scholar 

  • Andersson, S. and Dobson, H. E. M. 2003. Antennal responses to floral scents in the butterfly Heliconius melpomene. J. Chem. Ecol. 29:2319–2330.

    Article  PubMed  CAS  Google Scholar 

  • Azuma, H., Thien, L. B., Toyota, M., Asakawa, Y., and Kawano, S. 1997. Distribution and differential expression of (E)-4,8-dimethyl-1,3,7-nonatriene in leaf and floral volatiles of Magnolia and Liriodendron taxa. J. Chem. Ecol. 23:2467–2478.

    Article  CAS  Google Scholar 

  • Backman, A. C., Bengtsson, M., Borg-Karlsson, A. K., Liblikas, I., and Witzgall, P. 2001. Volatiles from apple (Malus domestica) eliciting antennal responses in female codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae): Effect of plant injury and sampling technique. Z. Nat.forsch., C J. Biosci. 56:262–268.

    CAS  Google Scholar 

  • Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P., and Dorn, S. 1998. Herbivore-induced emissions of maize repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87:13–142.

    Article  Google Scholar 

  • Birkett, M. A., Chamberlain, K., Guerrieri, E., Pickett, J. A., Wadhams, L. J., and Yasuda, T. 2003. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. J. Chem. Ecol. 29:1589–1600.

    Article  PubMed  CAS  Google Scholar 

  • Blackmer, J. L., Rodriguez-Saona, C., Byers, J. A., Shope, K. L., and Smith, J. P. 2004. Behavioral response of Lygus hesperus to conspecifics and headspace volatiles of alfalfa in a Y-tube olfactometer. J. Chem. Ecol. 30:1547–1564.

    Article  PubMed  CAS  Google Scholar 

  • Bruin, J. and Dicke, M. 2001. Chemical information transfer between wounded and unwounded plants: backing up the future. Biochem. Syst. Ecol. 29:1103–1113.

    Article  CAS  Google Scholar 

  • Choh, Y., Shimoda, T., Ozawa, R., Dicke, M., and Takabayashi, J. 2004. Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: Active or passive process? J. Chem. Ecol. 30:1305–1317.

    Article  PubMed  CAS  Google Scholar 

  • Davies, E. 1987. Wound responses in plants, pp. 243–264, in D. Davies (ed.). The Biochemistry of Plants. Vol. 12, Academic Press, London.

    Google Scholar 

  • Dement, W. A., Tyson, B. J., and Mooney, H. A. 1975. Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry 14:2555–2557.

    Article  CAS  Google Scholar 

  • De Boer, J. G., Posthumus, M. A., and Dicke, M. 2004. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J. Chem. Ecol. 30:2215–2230.

    Article  PubMed  Google Scholar 

  • de Bruxelles, G. L. and Roberts, M. R. 2001. Signals regulating multiple responses to wounding and herbivores. Crit. Rev. Plant Sci. 20:487–521.

    Article  Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  Google Scholar 

  • Du, Y. J., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1368.

    Article  CAS  Google Scholar 

  • Dufa, M., Hossaert-McKey, M., and Anstett, M. C. 2004. Temporal and sexual variation of leaf-produced pollinator-attracting odours in the dwarf palm. Oecologia 139:392–398.

    PubMed  Google Scholar 

  • Engelberth, J., Alborn, H. T., Schmelz, E. A., and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 101:1781–1785.

    Article  PubMed  CAS  Google Scholar 

  • Fäldt, J., Jonsell, M., Nordlander, G., and Borg-Karlson, A. K. 1999. Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J. Chem. Ecol. 25:567–590.

    Article  Google Scholar 

  • Farag, M. A. and Paré, P.W. 2002. C-6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554.

    Article  PubMed  CAS  Google Scholar 

  • Freire, M. T. D., Damant, A. P., Castle, L., and Reyes, F. G. R. 1999. Thermal stability of polyethylene terephthalate (PET): Oligomer distribution and formation of volatiles. Packag. Technol. Sci. 12:29–36.

    Article  CAS  Google Scholar 

  • Galliard, T. 1978. Lipolytic and lipoxygenase enzymes in plants and their action in wounded tissues, pp. 155–201, in G. Kahl (ed.). Biochemistry of Wounded Plant Storage Tissues. Walter de Gruyter & Co., Berlin.

    Google Scholar 

  • Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935–2954.

    Article  CAS  Google Scholar 

  • Gouinguene, S. P. and Turlings, T. C. J. 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129:1296–1307.

    Article  PubMed  CAS  Google Scholar 

  • Guenther, A. B., Monson, R. K., and Fall, R. 1991. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. J. Geophys. Res. 96:10799–10808.

    Article  Google Scholar 

  • Halitschke, R., Kessler, A., Kahl, J., Lorenz, A., and Baldwin, I. T. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124:408–417.

    Article  Google Scholar 

  • Heath, R. R. and Manukian, A. 1994. An automated system for use in collecting volatile chemicals released from plants. J. Chem. Ecol. 20:593–608.

    Article  CAS  Google Scholar 

  • Henneman, M. L., Dyreson, E. G., Takabayashi, J., and Raguso, R. A. 2002. Response to walnut olfactory and visual cues by the parasitic wasp Diachasmimorpha juglandis. J. Chem. Ecol. 28:2221–2244.

    Article  PubMed  CAS  Google Scholar 

  • Huber, F. K., Kaiser, R., Sauter, W., and Schiestl, F. P. 2005. Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142:564–575.

    Article  PubMed  Google Scholar 

  • Kalberer, N. M., Turlings, T. C. J., and Rahier, M. 2001. Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J. Chem. Ecol. 27:647–661.

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama, K., Takai, T., and Yamanaka, Y. 1978. Correlation between volatile substances released from plants and meteorological conditions, pp. 365–372, in E. T. White, P. Hetherington, B. R. Thiele (eds.). Proceedings from the International Clean Air Conference. Science Publishers, Ann Arbor, MI.

  • Karin, A. and Karlson, B. 1990. Chemical and ethological studies of pollination in the genus Ophrys (Orchidacae). Phytochemistry 29:1359–1387.

    Article  Google Scholar 

  • Knudsen, J. T., Töllsten, L., Groth, I., Bergstrom, G., and Raguso, R. A. 2004. Trends in floral scent chemistry in pollination syndromes: Floral scent composition in hummingbird pollinated taxa. Bot. J. Linn. Soc. 146:191–199.

    Article  Google Scholar 

  • Landon, F., Ferary, S., Pierre, D., Auger, J., Biemont, J. C., Levieux, J., and Pouzat, J. 1997. Sitona lineatus host-plant odors and their components: Effect on locomotor behavior and peripheral sensitivity variations. J. Chem. Ecol. 23:2161–2173.

    Article  CAS  Google Scholar 

  • Levin, R. A., Raguso, R. A., and McDade, L. A. 2001. Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry 58:429–440.

    Article  PubMed  CAS  Google Scholar 

  • Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. USA 91:11836–11840.

    Article  PubMed  CAS  Google Scholar 

  • Mattiacci, L., Rocca, B. A., Scascighini, N., D'Alessandro, M., Hern, A., and Dorn, S. 2001. Systemically induced plant volatiles emitted at the time of “danger.” J. Chem. Ecol. 27:2233–2252.

    Article  PubMed  CAS  Google Scholar 

  • Mookherjee, D., Trenkle, R. W., and Wilson, R. A. 1990. The chemistry of fruits, flowers and spices: Live vs. dead, a new dimension in fragrance research. Pure Appl. Chem. 62:1357–1364.

    Article  CAS  Google Scholar 

  • Mumm, R., Schrank, K., Wegener, R., Schulz, S., and Hilker, M., 2003. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J. Chem. Ecol. 29:1235–1252.

    Article  PubMed  CAS  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167.

    PubMed  Google Scholar 

  • Pellmyr, O., Thien, L. B., Bergstom, G., and Groth, I. 1990. Pollination of a New Caledonian Winteraceae—Opportunistic shifts or parallel radiation with their pollinators. Plant Syst. Evol. 173:143–157.

    Article  Google Scholar 

  • Pickett, J. A. and Poppy, G. M. 2001. Switching on plant genes by external chemical signals. Trends Plant Sci. 6:137–139.

    Article  PubMed  CAS  Google Scholar 

  • Powell, W., Pennacchio, F., Poppy, G. M., and Tremblay, E. 1998. Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol. Control 11:104–112.

    Article  Google Scholar 

  • Quiroz, A., Fuentes-Contreras, E., Ramirez, C. C., Russell, G. B., and Niemeyer, H. M. 1999. Host-plant chemicals and distribution of Neuquenaphis on Nothofagus. J. Chem. Ecol. 25:1043–1054.

    Article  CAS  Google Scholar 

  • Raguso, R. A. and Pellmyr, O. 1998. Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81:238–254.

    Article  CAS  Google Scholar 

  • Raguso, R. A., Levin, R. A., Foose, S. E., Holmberg, M. W., and McDade, L. A. 2003. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, J. D., Thain, J. F., and Wildon, D. C. 1999. Evidence for physically distinct systemic signalling pathways in the wounded tomato plant. Ann. Bot. London 84:109–116.

    Article  CAS  Google Scholar 

  • Rodriguez-Saona, C., Crafts-Brandner, S. J., and Canas, L. A. 2003. Volatile emissions triggered by multiple herbivore damage: Beet armyworm and whitefly feeding on cotton plants. J. Chem. Ecol. 29:2539–2550.

    Article  PubMed  CAS  Google Scholar 

  • Rojas, J. C. 1999. Electrophysiological and behavioral responses of the cabbage moth to plant volatiles. J. Chem. Ecol. 8:1867–1883.

    Article  Google Scholar 

  • Röse, U. S. R., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1996. Volatile semiochemicals released from undamaged cotton leaves—A systemic response of living plants to caterpillar damage. Plant Physiol. 111:487–495.

    PubMed  Google Scholar 

  • Russell, G. B., Faundez, E. H., and Niemeyer, H. M. 2004. Selection of Nothofagus host trees by the aphids Neuquenaphis staryi and Neuquenaphis edwardsi. J. Chem. Ecol. 30:2231–2241.

    Article  PubMed  CAS  Google Scholar 

  • Shani, A. and Clearwater, J. 1997. How efficient are all-glass systems for collection of airborne volatiles? J. Chem. Ecol. 23:1621–1633.

    Article  CAS  Google Scholar 

  • Schmelz, E. A., Slborn, H. T., and Tumnlinson, J. H. 2001. The influence of intact–plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile releases in Zea mays. Planta 214:171–179.

    Article  PubMed  CAS  Google Scholar 

  • Smid, H. A., van Loon, J. J. A., Posthumus, M. A., and Vet, L. E. M. 2002. GC-EAG-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: Olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology 12:169–176.

    Article  CAS  Google Scholar 

  • Smith, R. M., Marshall, J. A., Davey, M. R., Lowe, K. C., and Powers, J. B. 1996. Comparison of volatiles and waxes in leaves of genetically engineered tomatoes. Phytochemistry 43:753–758.

    Article  CAS  Google Scholar 

  • Tan, K. H., Nishida, R., and Toong, Y. C. 2002. Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactrocera fruit flies for pollination. J. Chem. Ecol. 28:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  • Tingey, D. T., Turner, D. P., and Weber, J. A. 1991. Factors controlling the emissions of monoterpenes and other volatile organic compounds, pp. 93–119, in T. D. Sharkey, E. A. Holland, and H. A. Mooney (eds.). Trace Gas Emissions by Plants. Academic Press, Inc., San Diego.

    Google Scholar 

  • Töllsten, L. and Bergström, G. 1988. Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry 27:4013–4018.

    Article  Google Scholar 

  • Töllsten, L. and Müller, P. M. 1996. Volatile organic compounds emitted from beech leaves. Phytochemistry 43:759–762.

    Article  Google Scholar 

  • Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. 1998a. The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biol. Control 11:122–129.

    Article  Google Scholar 

  • Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., and Wechsler, D. 1998b. Timing of induced volatile emissions in maize seedlings. Planta 207:146–152.

    Article  CAS  Google Scholar 

  • Van Den Boom, C. E. M., Van Beek, T. A., Posthumus, M. A., De Groot, A., and Dicke, M. 2004. Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J. Chem. Ecol. 30:69–89.

    Article  PubMed  Google Scholar 

  • van der Meijden, E. and Klinkhamer, P. G. L. 2000. Conflicting interests of plants and the natural enemies of herbivores. Oikos 89:202–208.

    Article  Google Scholar 

  • Visser, J. H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–144.

    Article  Google Scholar 

  • Zhang, Q.-H., Birgersson, G., Zhu, J.-W., Löfstedt, C., Löfqvist, J., and Schlyter, F. 1999. Leaf volatiles from nonhost deciduous trees: Variation by tree species, season, and temperature and electrophysiological activity in Ips typographus. J. Chem. Ecol. 25:1923–1943.

    Article  CAS  Google Scholar 

  • Zini, C. A., Augusto, F., Christensen, E., Smith, B. P., Caramao, E. B., and Pawliszyn, J. 2003. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME. Anal. Chem. 73:4729–4735.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Department for the Environment, Food and Rural Affairs. The Leckford Estate kindly granted permission to use their apple orchards, and project collaborators at East Malling Research and Rothamsted Research provided useful discussion.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart-Jones, A., Poppy, G.M. Comparison of Glass Vessels and Plastic Bags for Enclosing Living Plant Parts for Headspace Analysis. J Chem Ecol 32, 845–864 (2006). https://doi.org/10.1007/s10886-006-9039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9039-6

Keywords

Navigation