Skip to main content
Log in

Jahn–Teller Distortion Versus Spin–Orbit Splitting: Symmetry of Small Heavy-Metal Atom Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Metal clusters often show slight deviations from high molecular point group symmetry. The reason for this is a Jahn–Teller distortion because of partial occupation of orbitals that are degenerate in the highly symmetric case. For heavy elements spin–orbit coupling, which usually is not regarded in quantum chemical treatments of clusters, becomes non-negligible. This leads to splitting of degenerate orbitals, so that the reason for distortion is no longer given. In a rigorous study of neutral, cationic and anionic 4–6 atomic clusters of W, Re, Tl and Pb it is demonstrated that in some cases regarding spin–orbit coupling indeed yields a highly symmetric global minimum structure, whereas neglecting this effect leads to distorted structures of lower symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Ahlrichs and S. Elliott (1999). Phys. Chem. Chem. Phys. 2, 313.

    Google Scholar 

  2. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes (2002). J. Chem. Phys. 117, 6982.

    Article  CAS  Google Scholar 

  3. F. Weigend and A. Baldes (2010). J. Chem. Phys. 133, 174102.

    Article  Google Scholar 

  4. U. Wedig, V. Saltykov, J. Nuss, and M. Jansen (2010). J. Am. Chem. Soc. 132, 12458.

    Article  CAS  Google Scholar 

  5. V. Saltykov, J. Nuss, U. Wedig, and M. Jansen (2011). Z. Allg. Anorg. Chem. 637, 357.

    Article  CAS  Google Scholar 

  6. M. Sierka, J. Döbler, J. Sauer, G. Santambrogio, M. Brümmer, L. Wöste, E. Janssens, G. Meijer, and K. R. Asmis (2007). Angew. Chem. Int. Ed. 46, 3372.

    Article  CAS  Google Scholar 

  7. A. D. Becke (1988). Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  8. J. P. Perdew (1986). Phys. Rev. B 33, 8822.

    Article  Google Scholar 

  9. B. Metz, H. Stoll, and M. Dolg (2000). J. Chem. Phys. 113, 2563.

    Article  CAS  Google Scholar 

  10. D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll (2009). J. Chem. Phys. 130, 164108.

    Article  Google Scholar 

  11. F. Weigend (2006). Phys. Chem. Chem. Phys. 8, 1057.

    Article  CAS  Google Scholar 

  12. TURBOMOLE V6.3, TURBOMOLE GmbH Karlsruhe, 2011, http://www.turbomole.de. TURBOMOLE is a development of University of Karlsruhe and Forschungszentrum Karlsruhe 1989–2007, TURBOMOLE GmbH since 2007.

  13. M. K. Armbruster, F. Weigend, C. van Wüllen, and W. Klopper (2008). Phys. Chem. Chem. Phys. 10, 1748–1756.

    Article  CAS  Google Scholar 

  14. A. Baldes and F. Weigend (in preparation) (the feature is available in TURBOMOLE V6.3).

  15. P. Nava, M. Sierka, and R. Ahlrichs (2003). Phys. Chem. Chem. Phys. 5, 3372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Weigend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldes, A., Gulde, R. & Weigend, F. Jahn–Teller Distortion Versus Spin–Orbit Splitting: Symmetry of Small Heavy-Metal Atom Clusters. J Clust Sci 22, 355–363 (2011). https://doi.org/10.1007/s10876-011-0379-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0379-1

Keywords

Navigation