Skip to main content
Log in

Observation and Theoretical Analysis of the “Sensitive Coordination Sites” in the Isopolyoxomolybdate Cluster \([\hbox{Mo}_{36}\hbox{O}_{112}(\hbox{H}_{2}\hbox{O})_{14}]^{8-}\)

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Two isopolyoxomolybdate {Mo36} cluster compounds are presented, where one incorporates two sodium ions into the {Mo36} cluster cavity and the other does not, showing different “sensitive coordination sites” to organic cation ligands TEAH+ (protonated triethanolamine) as identified by X-ray crystallography, and rationalized by DFT calculations. The compound (TEAH)6{Na2 [Mo36O112(H2O)14]}· 28H2O (1) crystallizes in the trinclinic space group P−1, a=15.8931(2) Å, b=17.3089(2) Å, c=18.1880(3) Å, \(\alpha=101.210(1)\), \(\beta= 95.481(1)\), \(\gamma=116.585(1)^{\circ}\), V=4292.95(10) Å3, D c=2.688 g cm−3. 16838 unique reflections and 1213 refined parameters were used in structure refinement. R1=0.032, R2=0.071. When sodium is eliminated from the reaction system, the new compound (TEAH)8[Mo36O112 (H2O)14]· 10 H2O (2) was also isolated and crystallographically characterized. Compound 2 crystallizes in the monoclinic space group P−1, a=16.3351(3) Å, b=16.5709(4) Å, c=18.5803(5) Å, \(\alpha=83.330(1)\), \(\beta=65.010(2)\), \(\gamma=85.107(2)^{\circ}\), V=4524.08(18) Å3, D c=2.525 g cm−3. 17591 unique reflections and 1016 refined parameters were used in structure refinement. R1=0.044, R2=0.128.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. L. Cronin (2004), High Nuclearity Polyoxometalate Clusters in Comprehensive Coordination Chemistry 2, Ed. 7, 1; M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34; C. L. Hill (1998). Chem. Rev., 98, 1.

  2. Wassermann K., Dickman M. H., Pope M. T. (1997). Angew. Chem. Int. Ed. Engl. 36:1445

    Article  CAS  Google Scholar 

  3. Cronin L., Beugholt C., Krickemeyer E., Schmidtmann M., Bögge H., Kögerler P., Luong T. K. K., Müller A. (2002). Angew. Chem. Int. Ed., 41:2805

    Article  CAS  Google Scholar 

  4. Müller A., Beckmann E., Bögge H., Schmidtmann M., Dress A. (2002). Angew. Chem. Int. Ed. 41:1162

    Article  Google Scholar 

  5. Long D. -L., Kögerler P., Farrugia L. J., Cronin L. (2003). Angew. Chem. Int. Ed. 42:4180

    Article  CAS  Google Scholar 

  6. D.-L. Long, P. Kögerler, L. J. Farrugia and L. Cronin (2005). Dalton, 1372.

  7. Long D. -L., Kögerler P., Cronin L. (2004). Angew. Chem. Int. Ed., 43:1817

    Article  CAS  Google Scholar 

  8. D.-L. Long, D. Orr, G. Seeber, P. Kögerler, L. J. Farrugia and L. Cronin (2003). J. Clust. Sci., 14

  9. Abbas H., Pickering A. L., Long D. -L., Kögerler P., Cronin L. (2005). Chem. Eur. J. 11:1071

    Article  CAS  Google Scholar 

  10. B. Krebs and I. Paulat-Boschen (1982). Acta Cryst., Sect. B, 38, 1710; A. Müller, E. Krickemeyer, S. Dillinger, H. Bögge, W. Plass, A. Proust, L. Dloczik, C. Menke, J. Meyer and R. Rohlfing (1994). Z. Anorg. Allg. Chem., 620, 599; B. Krebs, S. Stiller, K. H. Tytko and J. Mehmke (1991). Euro. J. Solid Stat. Inorg. Chem., 28, 883; S. Zhang, D. Liao, M. Shao and Y. Tang (1986). J. Chem. Soc., Chem. Comm., 835; B. Krebs and I. Paulat-Boeschen (1979). J. Chem. Soc., Chem. Comm., 780; R. Atencio, A. Briceno and X. Galindo (2005). Chem. Commun., 637; S. -W. Zhang, Y. -G. Wei, Q. Yu, M. -C. Shao and Y. -Q. Tang (1997). J. Am. Chem. Soc., 119, 6440.

  11. Blessing R. H. (1995). Acta Cryst. A51:33

    CAS  Google Scholar 

  12. Computational details: DFT calculations were performed on isolated cluster anions using the TURBOMOLE 5.7 program package (O. Treutler, R. Ahlrichs (1995). J. Chem. Phys. 102, 346) employing TZVP basis sets and hybrid B3-LYP exchange/correlation functionals. In a first step, hydrogen positions of H2O ligand groups were modelled onto the crystallographic coordinates of the {Mo36} anions 1a and 2a whereby molecular C i symmetry was maintained. These coordinates were then allowed to relax until the total DFT energies converged, this resulted in maximum deviations smaller than 0.04 Å from the initial crystallographic coordinates. Atomic point charges were derived from the such-obtained final geometries using the Löwdin formalism. The use of the COSMO solvation model to account for continuum polarization effects in aqueous solution significantly and evenly decreased the energies of the frontier orbitals but did not significantly affect the charge distributions.

Download references

Acknowledgments

This work was supported by the Leverhulme Trust (London), The Royal Society, The University of Glasgow and the EPSRC. The EPSRC provided funds for the X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leroy Cronin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, DL., Streb, C., Kögerler, P. et al. Observation and Theoretical Analysis of the “Sensitive Coordination Sites” in the Isopolyoxomolybdate Cluster \([\hbox{Mo}_{36}\hbox{O}_{112}(\hbox{H}_{2}\hbox{O})_{14}]^{8-}\) . J Clust Sci 17, 257–266 (2006). https://doi.org/10.1007/s10876-006-0058-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-006-0058-9

Key words

Navigation