Skip to main content

Advertisement

Log in

Human Fibroblasts Share Immunosuppressive Properties with Bone Marrow Mesenchymal Stem Cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells share immunosuppressive capacities, suggesting that the latter could be a general property of stromal cells.

Methods

To check this hypothesis, we compared human BM-MSC and fibroblasts for their in vitro multi-potentiality, expandability and their immunomodulatory properties under normalized optimized culture conditions.

Results

We report that, unlike BM-MSCs, fibroblasts cannot differentiate in vitro into adipocytes and osteoblasts and differ from BM-MSCs by the expression of membrane CD106, CD10 and CD26 and by the expression of collagen VII mRNA. Like BM-MSCs, fibroblasts are unable to provoke in vitro allogeneic reactions, but strongly suppress lymphocyte proliferation induced by allogeneic mixed lymphocyte culture (MLC) or mitogens. We show that fibroblasts' immunosuppressive capacity is independent from prostaglandin E2, IL-10 and the tryptophan catabolising enzyme indoleamine 2,3-dioxygenase and is not abrogated after the depletion of CD8+ T lymphocytes, NK cells and monocytes.

Conclusion

Finally, fibroblasts and BM-MSCs act at an early stage through blockage of lymphocyte activation, as demonstrated by down-regulation of GZMB (granzyme B) and IL2RA (CD25) expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  2. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol. 2004;32:414–25.

    Article  CAS  PubMed  Google Scholar 

  3. Jorgensen C, Djouad F, Apparailly F, Noel D. Engineering mesenchymal stem cells for immunotherapy. Gene Ther. 2003;10:928–31.

    Article  CAS  PubMed  Google Scholar 

  4. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000;18:307–16.

    CAS  PubMed  Google Scholar 

  5. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16:557–64.

    CAS  PubMed  Google Scholar 

  6. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–8.

    Article  PubMed  Google Scholar 

  7. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102:3837–44.

    Article  CAS  PubMed  Google Scholar 

  8. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11–20.

    Article  PubMed  Google Scholar 

  9. Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res. 2006;312:2169–79.

    Article  CAS  PubMed  Google Scholar 

  10. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389–97.

    Article  CAS  PubMed  Google Scholar 

  11. Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther. 2007;9:301.

    Article  PubMed  Google Scholar 

  12. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    Article  CAS  PubMed  Google Scholar 

  13. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.

    Article  PubMed  Google Scholar 

  14. Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305:33–41.

    Article  CAS  PubMed  Google Scholar 

  15. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386–98.

    Article  CAS  PubMed  Google Scholar 

  16. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21.

    Article  CAS  PubMed  Google Scholar 

  17. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–50.

    Article  CAS  PubMed  Google Scholar 

  18. Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V. In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. J Cell Physiol. 2008;214:588–94.

    Article  CAS  PubMed  Google Scholar 

  19. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109:228–34.

    Article  CAS  PubMed  Google Scholar 

  20. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–29.

    Article  PubMed  Google Scholar 

  21. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    Article  CAS  PubMed  Google Scholar 

  22. Niemeyer P, Kornacker M, Mehlhorn A, Seckinger A, Vohrer J, Schmal H, et al. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng. 2007;13:111–21.

    Article  CAS  PubMed  Google Scholar 

  23. Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 2006;24:2466–77.

    Article  CAS  PubMed  Google Scholar 

  24. Castro-Malaspina H, Gay R, Resnick G, Kapoor N, Meyers P, Chiarieri D, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood. 1980;56:289–301.

    CAS  PubMed  Google Scholar 

  25. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  26. Castro-Malaspina H, Ebell W, Wang S. Human bone marrow fibroblast colony-forming units (CFU-F). Prog Clin Biol Res. 1984;154:209–36.

    CAS  PubMed  Google Scholar 

  27. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16.

    Article  CAS  PubMed  Google Scholar 

  28. Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R. Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng. 2002;8:901–10.

    Article  CAS  PubMed  Google Scholar 

  29. Shih DT, Lee DC, Chen SC, Tsai RY, Huang CT, Tsai CC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells. 2005;23:1012–20.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Z, Liao L, Cao Y, Jiang X, Zhao RC. Establishment and properties of fetal dermis-derived mesenchymal stem cell lines: plasticity in vitro and hematopoietic protection in vivo. Bone Marrow Transplant. 2005;36:355–65.

    Article  CAS  PubMed  Google Scholar 

  31. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28:875–84.

    Article  CAS  PubMed  Google Scholar 

  32. Haniffa MA, Wang XN, Holtick U, Rae M, Isaacs JD, Dickinson AM, et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol. 2007;179:1595–604.

    CAS  PubMed  Google Scholar 

  33. Jones S, Horwood N, Cope A, Dazzi F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol. 2007;179:2824–31.

    CAS  PubMed  Google Scholar 

  34. Titeux M, Pendaries V, Tonasso L, Decha A, Bodemer C, Hovnanian A. A frequent functional SNP in the MMP1 promoter is associated with higher disease severity in recessive dystrophic epidermolysis bullosa. Hum Mutat. 2008;29:267–76.

    Article  CAS  PubMed  Google Scholar 

  35. Ito M, Ogawa K, Takeuchi K, Nakada A, Heishi M, Suto H, et al. Gene expression of enzymes for tryptophan degradation pathway is upregulated in the skin lesions of patients with atopic dermatitis or psoriasis. J Dermatol Sci. 2004;36:157–64.

    Article  CAS  PubMed  Google Scholar 

  36. Moniotte S, Vaerman JL, Kockx MM, Larrouy D, Langin D, Noirhomme P, et al. Real-time RT-PCR for the detection of beta-adrenoceptor messenger RNAs in small human endomyocardial biopsies. J Mol Cell Cardiol. 2001;33:2121–33.

    Article  CAS  PubMed  Google Scholar 

  37. Campioni D, Moretti S, Ferrari L, Punturieri M, Castoldi GL, Lanza F. Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica. 2006;91:364–8.

    PubMed  Google Scholar 

  38. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 2000;97:3213–8.

    Article  CAS  PubMed  Google Scholar 

  39. Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D, et al. Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr. 2005;12:245–57.

    Article  CAS  PubMed  Google Scholar 

  40. Geppert TD, Lipsky PE. Antigen presentation by interferon-gamma-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression. J Immunol. 1985;135:3750–62.

    CAS  PubMed  Google Scholar 

  41. Geppert TD, Lipsky PE. Dissection of defective antigen presentation by interferon-gamma-treated fibroblasts. J Immunol. 1987;138:385–92.

    CAS  PubMed  Google Scholar 

  42. Ohyama H, Nishimura F, Meguro M, Takashiba S, Murayama Y, Matsushita S. Counter-antigen presentation: fibroblasts produce cytokines by signalling through HLA class II molecules without inducing T-cell proliferation. Cytokine. 2002;17:175–81.

    Article  CAS  PubMed  Google Scholar 

  43. Smythe JA, Fink PD, Logan GJ, Lees J, Rowe PB, Alexander IE. Human fibroblasts transduced with CD80 or CD86 efficiently trans-costimulate CD4+ and CD8+ T lymphocytes in HLA-restricted reactions: implications for immune augmentation cancer therapy and autoimmunity. J Immunol. 1999;163:3239–49.

    CAS  PubMed  Google Scholar 

  44. Donnelly JJ, Xi MS, Rockey JH. A soluble product of human corneal fibroblasts inhibits lymphocyte activation. Enhancement by interferon-gamma. Exp Eye Res. 1993;56:157–65.

    Article  CAS  PubMed  Google Scholar 

  45. Shimabukuro Y, Murakami S, Okada H. Interferon-gamma-dependent immunosuppressive effects of human gingival fibroblasts. Immunology. 1992;76:344–7.

    CAS  PubMed  Google Scholar 

  46. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol. 2003;171:3426–34.

    CAS  PubMed  Google Scholar 

  47. Maitra B, Szekely E, Gjini K, Laughlin MJ, Dennis J, Haynesworth SE, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004;33:597–604.

    Article  CAS  PubMed  Google Scholar 

  48. Prockop DJ, Azizi SA, Colter D, Digirolamo C, Kopen G, Phinney DG. Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system. Biochem Soc Trans. 2000;28:341–5.

    Article  CAS  PubMed  Google Scholar 

  49. Danzer SG, Kirchner H, Rink L. Cytokine interactions in human mixed lymphocyte culture. Transplantation. 1994;57:1638–42.

    CAS  PubMed  Google Scholar 

  50. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105:2214–9.

    Article  CAS  PubMed  Google Scholar 

  51. Corrigall VM, Garyfallos A, Panayi GS. The relative proportions of secreted interleukin-2 and interleukin-10 determine the magnitude of rheumatoid arthritis T-cell proliferation to the recall antigen tuberculin purified protein derivative. Rheumatology (Oxford). 1999;38:1203–7.

    Article  CAS  Google Scholar 

  52. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2, 3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000;164:3596–9.

    CAS  PubMed  Google Scholar 

  53. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.

    Article  CAS  PubMed  Google Scholar 

  54. Holmes EW. Expression and regulation of interferon-gamma-induced tryptophan catabolism in cultured skin fibroblasts. J Interferon Cytokine Res. 1998;18:509–20.

    Article  CAS  PubMed  Google Scholar 

  55. Ghahary A, Li Y, Tredget EE, Kilani RT, Iwashina T, Karami A, et al. Expression of indoleamine 2, 3-dioxygenase in dermal fibroblasts functions as a local immunosuppressive factor. J Invest Dermatol. 2004;122:953–64.

    Article  PubMed  Google Scholar 

  56. Sarkhosh K, Tredget EE, Karami A, Uludag H, Iwashina T, Kilani RT, et al. Immune cell proliferation is suppressed by the interferon-gamma-induced indoleamine 2, 3-dioxygenase expression of fibroblasts populated in collagen gel (FPCG). J Cell Biochem. 2003;90:206–17.

    Article  CAS  PubMed  Google Scholar 

  57. Sarkhosh K, Tredget EE, Li Y, Kilani RT, Uludag H, Ghahary A. Proliferation of peripheral blood mononuclear cells is suppressed by the indoleamine 2, 3-dioxygenase expression of interferon-gamma-treated skin cells in a co-culture system. Wound Repair Regen. 2003;11:337–45.

    Article  PubMed  Google Scholar 

  58. Mahanonda R, Sa-Ard-Iam N, Montreekachon P, Pimkhaokham A, Yongvanichit K, Fukuda MM, et al. IL-8 and IDO expression by human gingival fibroblasts via TLRs. J Immunol. 2007;178:1151–7.

    CAS  PubMed  Google Scholar 

  59. Groh ME, Maitra B, Szekely E, Koc ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol. 2005;33:928–34.

    Article  CAS  PubMed  Google Scholar 

  60. Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M, et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol. 2004;60:307–15.

    Article  PubMed  Google Scholar 

  61. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministère Français de la Recherche (EA3034) and Région Midi-Pyrénées. We thank Christine Bousquet, Christine Taureau and Mélanie Gadelorge for excellent technical assistance. We also thank Sabrina Kellouche (INSERM U553, Paris, France) for providing us with adult dermal fibroblasts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Blancher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappellesso-Fleury, S., Puissant-Lubrano, B., Apoil, PA. et al. Human Fibroblasts Share Immunosuppressive Properties with Bone Marrow Mesenchymal Stem Cells. J Clin Immunol 30, 607–619 (2010). https://doi.org/10.1007/s10875-010-9415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9415-4

Keywords

Navigation