Skip to main content

Advertisement

Log in

Heat Shock Protein 32 in Human Peripheral Blood Mononuclear Cells: Effect of Aging and Inflammation

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The purpose of the present study was to assess the influence of age and acute infection on the production of Hsp32 in human peripheral blood cells, using flow cytometry. Thirty-five controls and 31 patients with acute infection participated. We found that the age and inflammatory status correlated positively with Hsp32 levels in both heat shocked (HS) and non-HS monocytes and lymphocytes. In addition, the HS response of Hsp32 was different in these peripheral blood cells; whereas HS exerted an up-regulation in the levels of Hsp32 in monocytes, a significant decrease in Hsp32 levels was noticed for lymphocytes. We found significant relationships between circulating C-reactive protein as well as interleukin-6 and the levels of Hsp32 in cells. We conclude that Hsp32 is up-regulated in the elderly as well as in individuals with inflammation, and that the HS response of Hsp32 is different in monocytes as compared to lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlesinger MJ, Ashburner M, Tissieres A: Heat Shock from Bacteria to Man. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, 1982

  2. Sorger PK, Pelham HR: Cloning and expression of a gene encoding hsc73, the major hsp70-like protein in unstressed rat cells. EMBO J 6:993–998, 1987

    PubMed  Google Scholar 

  3. O’Malley K, Mauron A, Barchas JD, Kedes L: Constitutively expressed rat mRNA encoding a 70-kilodalton heat-shock-like protein. Mol Cell Biol 5:3476–3483, 1985

    PubMed  Google Scholar 

  4. Haire RN, Peterson MS, O’Leary JJ: Mitogen activation induces the enhanced synthesis of two heat-shock proteins in human lymphocytes. J Cell Biol 106:883–891, 1988

    Article  PubMed  Google Scholar 

  5. Twomey BM, McCallum S, Isenberg DA, Latchman DS: Elevation of heat shock protein synthesis and hsp gene transcription during monocyte to macrophage differentiation of U937 cells. Clin Exp Immunol 93:178–183, 1993

    PubMed  Google Scholar 

  6. Richards FM, Watson A, Hickman JA: Investigation of the effects of heat shock and agents which induce a heat shock response on the induction of differentiation of HL-60 cells. Cancer Res 48:6715–6720, 1988

    PubMed  Google Scholar 

  7. Kao HT, Capasso O, Heintz N, Nevins JR: Cell cycle control of the human HSP70 gene: Implications for the role of a cellular E1A-like function. Mol Cell Biol 5:628–633, 1985

    PubMed  Google Scholar 

  8. Bensaude O, Babinet C, Morange M, Jacob F: Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 305:331–3, 1983

    Article  PubMed  Google Scholar 

  9. Njemini R, Abeele MV, Demanet C, Lambert M, Vandebosch S, Mets T: Age-related decrease in the inducibility of heat-shock protein 70 in human peripheral blood mononuclear cells. J Clin Immunol 22:195–205, 2002

    Article  PubMed  Google Scholar 

  10. Tanaka K, Jay G, Isselbacher KJ: Expression of heat-shock and glucose-regulated genes: Differential effects of glucose starvation and hypertonicity. Biochim Biophys Acta 950:138–146, 1988

    PubMed  Google Scholar 

  11. Chi NC, Karliner JS: Molecular determinants of responses to myocardial ischemia/reperfusion injury: Focus on hypoxia-inducible and heat shock factors. Cardiovasc Res 61:437–447, 2004

    Article  PubMed  Google Scholar 

  12. Hammerer-Lercher A, Mair J, Bonatti J, Watzka SB, Puschendorf B, Dirnhofer S: Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res 50:115–124, 2001

    Article  PubMed  Google Scholar 

  13. Jaattela M, Wissing D: Heat-shock proteins protect cells from monocyte cytotoxicity: Possible mechanism of self-protection. J Exp Med 177:231–236, 1993

    Article  PubMed  Google Scholar 

  14. Georgopoulos C, Welch WJ: Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634, 1993

    Google Scholar 

  15. Welch WJ: Heat shock proteins functioning as molecular chaperones: Their roles in normal and stressed cells. Philos Trans R Soc Lond B Biol Sci 339:327–333, 1993

    PubMed  Google Scholar 

  16. Feder ME, Hofmann GE: Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 61:243–82, 1999

    Google Scholar 

  17. Tenhunen R, Marver HS, Schmid R: The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61:748–755, 1968

    PubMed  Google Scholar 

  18. Applegate LA, Luscher P, Tyrrell RM: Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 51:974–978, 1991

    Google Scholar 

  19. Nath KA, Balla G, Vercellotti GM, Balla J, Jacob HS, Levitt MD, Rosenberg ME: Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest 90:267–270, 1992

    PubMed  Google Scholar 

  20. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S: Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103:129–135, 1999

    PubMed  Google Scholar 

  21. Rensing H, Bauer I, Datene V, Patau C, Pannen BH, Bauer M: Differential expression pattern of heme oxygenase-1/heat shock protein 32 and nitric oxide synthase-II and their impact on liver injury in a rat model of hemorrhage and resuscitation. Crit Care Med 27:2766–27675, 1999

    Article  PubMed  Google Scholar 

  22. Lee TS, Tsai HL, Chau LY: Induction of heme oxygenase-1 expression in murine macrophages is essential for the anti-inflammatory effect of low dose 15-deoxy-Delta 12,14-prostaglandin J2. J Biol Chem 278:19325–19330, 2003

    Article  PubMed  Google Scholar 

  23. Guo X, Shin VY, Cho CH: Modulation of heme oxygenase in tissue injury and its implication in protection against gastrointestinal diseases. Life Sci 69:3113–3119, 2001

    Article  PubMed  Google Scholar 

  24. Llesuy SF, Tomaro ML: Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta 1223:9–14, 1994

    Article  PubMed  Google Scholar 

  25. McCoubrey WK Jr, Huang TJ, Maines MD: Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732, 1997

    Article  PubMed  Google Scholar 

  26. Cruse I, Maines MD: Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem 263:3348–3353, 1988

    PubMed  Google Scholar 

  27. Maines MD, Mayer RD, Ewing JF, McCoubrey WK Jr: Induction of kidney heme oxygenase-1 (HSP32) mRNA and protein by ischemia/reperfusion: possible role of heme as both promotor of tissue damage and regulator of HSP32. J Pharmacol Exp Ther 264:457–462, 1993

    PubMed  Google Scholar 

  28. Bauer M, Pannen BH, Bauer I, Herzog C, Wanner GA, Hanselmann R, Zhang JX, Clemens MG, Larsen R: Evidence for a functional link between stress response and vascular control in hepatic portal circulation. Am J Physiol 271:929–935, 1996

    Google Scholar 

  29. Sonin NV, Garcia-Pagan JC, Nakanishi K, Zhang JX, Clemens MG: Patterns of vasoregulatory gene expression in the liver response to ischemia/reperfusion and endotoxemia. Shock 11:175–179, 1999

    PubMed  Google Scholar 

  30. Choi AM, Alam J: Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19, 1996

    PubMed  Google Scholar 

  31. Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H: Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 156:1140–1143, 1997

    PubMed  Google Scholar 

  32. Murphy BJ, Laderoute KR, Short SM, Sutherland RM: The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells. Br J Cancer 64:69–73, 1991

    PubMed  Google Scholar 

  33. Keyse SM, Tyrrell RM: Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA 86:99–103, 1989

    PubMed  Google Scholar 

  34. Taketani S, Kohno H, Yoshinaga T, Tokunaga R: The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett 245:173–176, 1989

    Article  PubMed  Google Scholar 

  35. Shibahara S, Muller RM, Taguchi H: Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 262:12889–12892, 1987

    Google Scholar 

  36. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247, 2000

    PubMed  Google Scholar 

  37. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A: Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98:10469–10474, 2001

    Article  PubMed  Google Scholar 

  38. Golden TR, Melov S: Mitochondrial DNA mutations, oxidative stress, and aging. Mech Ageing Dev 122:1577–1589, 2001

    Article  PubMed  Google Scholar 

  39. Stadtman ER: Protein oxidation and aging. Science 257:1220–1224, 1992

    PubMed  Google Scholar 

  40. Mandavilli BS, Santos JH, Van Houten B: Mitochondrial DNA repair and aging. Mutat Res 509:127–151, 2002

    PubMed  Google Scholar 

  41. Bokov A, Chaudhuri A, Richardson A: The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826, 2004

    Article  PubMed  Google Scholar 

  42. Stadtman ER: Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38, 2001

    PubMed  Google Scholar 

  43. Hagen TM: Oxidative stress, redox imbalance, and the aging process. Antioxid Redox Signal 5:503–6, 2003

    Article  PubMed  Google Scholar 

  44. Beal MF: Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803, 2002

    Article  PubMed  Google Scholar 

  45. Sohal RS: Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med 33:37–44, 2002

    Article  PubMed  Google Scholar 

  46. Drew B, Leeuwenburgh C: Aging and the role of reactive nitrogen species. Ann N Y Acad Sci 959:66–81, 2002

    PubMed  Google Scholar 

  47. Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER: Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci USA 96:7809–14, 1999

    Article  PubMed  Google Scholar 

  48. Lavrovsky Y, Song CS, Chatterjee B, Roy AK: Age-dependent increase of heme oxygenase-1 gene expression in the liver mediated by NFkappaB. Mech Ageing Dev 114:49–60, 2000

    Article  PubMed  Google Scholar 

  49. Iijima N, Tamada Y, Hayashi S, Tanaka M, Ishihara A, Hasegawa M, Ibata Y: Expanded expression of heme oxygenase-1 (HO-1) in the hypothalamic median eminence of aged as compared with young rats: An immunocytochemical study. Neurosci Lett 271:113–116, 1999

    Article  PubMed  Google Scholar 

  50. Hirose W, Ikematsu K, Tsuda R: Age-associated increases in heme oxygenase-1 and ferritin immunoreactivity in the autopsied brain. Leg Med 5:360–366, 2003

    Article  Google Scholar 

  51. Gardner ID. The effect of aging on susceptibility to infection. Rev Infect Dis 2:801–10, 1980

    PubMed  Google Scholar 

  52. Ferrucci L, Guralnik JM, Studenski S, Fried LP, Cutler GB Jr, Walston JD: Interventions on Frailty Working Group. Designing randomized, controlled trials aimed at preventing or delaying functional decline and disability in frail, older persons: A consensus report. J Am Geriatr Soc 52:625–634, 2004

    Google Scholar 

  53. Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA 86:99–103, 1989

    PubMed  Google Scholar 

  54. Bechoua S, Dubois M, Dominguez Z, Goncalves A, Nemoz G, Lagarde M, Prigent AF: Protective effect of docosahexaenoic acid against hydrogen peroxide-induced oxidative stress in human lymphocytes. Biochem Pharmacol 57:1021–30, 1999

    Article  PubMed  Google Scholar 

  55. Njemini R, Lambert M, Demanet C, Vanden Abeele M, Vandebosch S, Mets T: The induction of heat shock protein 70 in peripheral mononuclear blood cells in elderly patients: A role for inflammatory markers. Hum Immunol 64:575–585, 2003

    PubMed  Google Scholar 

  56. Maly FE, Nakamura M, Gauchat JF, Urwyler A, Walker C, Dahinden CA, Cross AR, Jones OT, de Weck AL: Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines. J Immunol 142:1260–1267, 1989

    PubMed  Google Scholar 

  57. Orie NN, Zidek W, Tepel M: Tyrosine and calcium/calmodulin kinases are common signaling components in the generation of reactive oxygen species in human lymphocytes. Life Sci 65:2135–2142, 1999

    Article  PubMed  Google Scholar 

  58. Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS: Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med 195:59–70, 2002

    Article  PubMed  Google Scholar 

  59. Lee PJ, Camhi SL, Chin BY, Alam J, Choi AM: AP-1 and STAT mediate hyperoxia-induced gene transcription of heme oxygenase-1. Am J Physiol Lung Cell Mol Physiol 279:175–182, 2000

    Google Scholar 

  60. Kurata S, Matsumoto M, Tsuji Y, Nakajima H: Lipopolysaccharide activates transcription of the heme oxygenase gene in mouse M1 cells through oxidative activation of nuclear factor kappa B. Eur J Biochem 239:566–571, 1996

    Article  PubMed  Google Scholar 

  61. Peng J, Jones GL, Watson K: Stress proteins as biomarkers of oxidative stress: Effects of antioxidant supplements. Free Radic Biol Med 28:1598–1606, 2000

    Article  PubMed  Google Scholar 

  62. Unno K, Asakura H, Shibuya Y, Kaiho M, Okada S, Oku N: Increase in basal level of Hsp70, consisting chiefly of constitutively expressed Hsp70 (Hsc70) in aged rat brain. J Gerontol A Biol Sci Med Sci 55:329–35, 2000

    Google Scholar 

  63. Maiello M, Boeri D, Sampietro L, Pronzato MA, Odetti P, Marinari UM: Basal synthesis of heat shock protein 70 increases with age in rat kidneys. Gerontology 44:15–20, 1998

    Article  PubMed  Google Scholar 

  64. King V, Tower J: Aging-specific expression of Drosophila hsp22. Dev Biol 207:107–18, 1999

    Article  PubMed  Google Scholar 

  65. Levere RD, Staudinger R, Loewy G, Kappas A, Shibahara S, Abraham NG: Elevated levels of heme oxygenase-1 activity and mRNA in peripheral blood adherent cells of acquired immunodeficiency syndrome patients. Am J Hematol 43:19–23, 1993

    PubMed  Google Scholar 

  66. Zampetaki A, Minamino T, Mitsialis SA, Kourembanas S: Effect of heme oxygenase-1 overexpression in two models of lung inflammation. Exp Biol Med 228:442–446, 2003

    Google Scholar 

  67. Ohta K, Kikuchi T, Arai S, Yoshida N, Sato A, Yoshimura N: Protective role of heme oxygenase-1 against endotoxin-induced uveitis in rats. Exp Eye Res 77:665–673, 2003

    Article  PubMed  Google Scholar 

  68. Otterbein LE, Choi AM: Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279:1029–1037, 2000

    Google Scholar 

  69. Vachharajani TJ, Work J, Issekutz AC, Granger DN: Heme oxygenase modulates selectin expression in different regional vascular beds. Am J Physiol Heart Circ Physiol 278:1613–1617, 2000

    Google Scholar 

  70. Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, Adema G, van Kooyk Y, de Witte T, Figdor CG: Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98:1802–1811, 2001

    Article  PubMed  Google Scholar 

  71. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S: Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA 98:8798–8803, 2001

    Article  PubMed  Google Scholar 

  72. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM: Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428, 2000

    Article  PubMed  Google Scholar 

  73. Reeve VE, Tyrrell RM. Heme oxygenase induction mediates the photoimmunoprotective activity of UVA radiation in the mouse. Proc Natl Acad Sci USA 96:9317–21, 1999

    Article  PubMed  Google Scholar 

  74. Eisenstein RS, Garcia-Mayol D, Pettingell W, Munro HN. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc Natl Acad Sci USA 88:688–92, 1991

    PubMed  Google Scholar 

  75. Lavrovsky Y, Schwartzman ML, Levere RD, Kappas A, Abraham NG. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci USA 91:5987–91, 1994

    PubMed  Google Scholar 

  76. Abraham NG, Lavrovsky Y, Schwartzman ML, Stoltz RA, Levere RD, Gerritsen ME, Shibahara S, Kappas A. Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc Natl Acad Sci USA 92:6798–802, 1995

    PubMed  Google Scholar 

  77. Suttner DM, Sridhar K, Lee CS, Tomura T, Hansen TN, Dennery PA. Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am J Physiol 276:443–51, 1999

    Google Scholar 

  78. Yamada N, Yamaya M, Okinaga S, Lie R, Suzuki T, Nakayama K, Takeda A, Yamaguchi T, Itoyama Y, Sekizawa K, Sasaki H. Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am J Respir Cell Mol Biol 21:428–35, 1999

    PubMed  Google Scholar 

  79. Elouil H, Cardozo AK, Eizirik DL, Henquin JC, Jonas JC. High glucose and hydrogen peroxide increase c-Myc and haeme-oxygenase 1 mRNA levels in rat pancreatic islets without activating NFkappaB. Diabetologia 48:496–505, 2005

    Article  PubMed  Google Scholar 

  80. Johnson WT, DeMars LC. Increased heme oxygenase-1 expression during copper deficiency in rats results from increased mitochondrial generation of hydrogen peroxide. J Nutr 134:1328–33, 2004

    PubMed  Google Scholar 

  81. Lautier D, Luscher P, Tyrrell RM. Endogenous glutathione levels modulate both constitutive and UVA radiation/hydrogen peroxide inducible expression of the human heme oxygenase gene. Carcinogenesis 13:227–32, 1992

    PubMed  Google Scholar 

  82. Flegar-Mestric Z, Nazor A, Jagarinec N: Haematological profile in healthy urban population (8 to 70 years of age). Coll Antropol 24:185–196, 2000

    PubMed  Google Scholar 

  83. Strasser A, Teltscher A, May B, Sanders C, Niedermuller H: Age-associated changes in the immune system of German shepherd dogs. J Vet Med A Physiol Pathol Clin Med 47:181–192, 2000

    PubMed  Google Scholar 

  84. Rochman H: Hematology. In Clinical Pathology in the Elderly. A Textbook of Laboratory Interpretations, H Rochman, MM Lubran, B.A Bradlow (eds). Basel, Karger AG, 1988, pp 142–152

    Google Scholar 

  85. Poss KD, Tonegawa S: Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci USA 94:10925–10930, 1997

    Article  PubMed  Google Scholar 

  86. Poss KD, Tonegawa S: Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 94:10919–10924, 1997

    Article  PubMed  Google Scholar 

  87. Naito Y, Takagi T, Yoshikawa T: Heme oxygenase-1: A new therapeutic target for inflammatory bowel disease. Aliment Pharmacol Ther 20:177–184, 2004

    Article  PubMed  Google Scholar 

  88. Abraham NG: Therapeutic applications of human heme oxygenase gene transfer and gene therapy. Curr Pharm Des 9:2513–2524, 2003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Mets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Njemini, R., Lambert, M., Demanet, C. et al. Heat Shock Protein 32 in Human Peripheral Blood Mononuclear Cells: Effect of Aging and Inflammation. J Clin Immunol 25, 405–417 (2005). https://doi.org/10.1007/s10875-005-5361-y

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-005-5361-y

Keywords

Navigation